Quiescent and shear-induced crystallization of polyprophylenes

In this paper, the effect of shear on the flow-induced crystallization (FIC) of several polypropylenes of various macrostructures was studied using rheometry combined with polarized microscopy. Generally, an increase in strain and strain rate or decrease of temperature is found to decrease the therm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rheologica acta 2014-07, Vol.53 (7), p.519-535
Hauptverfasser: Derakhshandeh, Maziar, Doufas, Antonios K., Hatzikiriakos, Savvas G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the effect of shear on the flow-induced crystallization (FIC) of several polypropylenes of various macrostructures was studied using rheometry combined with polarized microscopy. Generally, an increase in strain and strain rate or decrease of temperature is found to decrease the thermodynamic barrier for crystal formation and thus enhancing crystallization kinetics at temperatures between the melting and crystallization points. Secondly, popular models based on suspension theory which are used to relate the degree of crystallinity to normalized rheological functions (such as viscosity) are validated experimentally. For this purpose, the space filling of crystals in the polarized micrographs determined from image processing was plotted as a function of normalized viscosity under various shear rates. It is found that the constant(s) of various suspension models should be dependent on the flow parameters in order for the suspension models to describe the effect of shear on FIC, particularly at higher shear rates.
ISSN:0035-4511
1435-1528
DOI:10.1007/s00397-014-0775-1