Rheological and molecular characterization of long-chain branched poly(ethylene terephthalate)

Reactive extrusion with pyromellitic dianhydride (PMDA) and tetraglycidyl diamino diphenyl methane (TGDDM) was conducted to create long-chain branched poly(ethylene terephthalate) (LCB-PET). The mechanical and molecular properties were analyzed by linear and non-linear viscoelastic rheology in the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rheologica acta 2017-11, Vol.56 (11), p.887-904
Hauptverfasser: Kruse, Matthias, Wagner, Manfred H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reactive extrusion with pyromellitic dianhydride (PMDA) and tetraglycidyl diamino diphenyl methane (TGDDM) was conducted to create long-chain branched poly(ethylene terephthalate) (LCB-PET). The mechanical and molecular properties were analyzed by linear and non-linear viscoelastic rheology in the melt state and by size-exclusion chromatography measurements with triple detection. The two tetra-functional chain extenders lead to strong viscosity increases, increasing strain hardening effects, and increasing LCB with increasing chain extender concentration. Molecular stress function model predictions show good agreement with the elongational data measured and allowed a quantification of the strain hardening. Analysis of SEC triple detection data shows a strong increase of the average molar mass, polydispersity, radius of gyration, and hydrodynamic radius with increasing chain extender concentration. Branching was confirmed by a decreasing Mark-Houwink exponent, and the analysis of the contraction of the molecule revealed either star-like, comb-like, random tree-like or hyperbranched structures depending on concentration and type of chain extender.
ISSN:0035-4511
1435-1528
DOI:10.1007/s00397-017-1043-y