Rheological and foaming behavior of linear and branched polylactides

In this work, a chain extender (CE) was added to polylactide (PLA) to improve its foamability. The steady and transient rheological properties of neat PLA and CE-treated PLA revealed that the introduction of the CE profoundly affected the melt viscosity and elasticity. The linear viscoelastic proper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rheologica acta 2014-11, Vol.53 (10-11), p.779-790
Hauptverfasser: Najafi, Naqi, Heuzey, Marie-Claude, Carreau, Pierre J., Therriault, Daniel, Park, Chul B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, a chain extender (CE) was added to polylactide (PLA) to improve its foamability. The steady and transient rheological properties of neat PLA and CE-treated PLA revealed that the introduction of the CE profoundly affected the melt viscosity and elasticity. The linear viscoelastic properties of CE-enriched PLA suggested that a long-chain branching (LCB) structure was formed from the reaction with the CE. LCB-PLA exhibited an increased viscosity, more shear sensitivity, and longer relaxation time in comparison with the linear PLA. The LCB structure was also found to affect the transient shear stress growth and elongational flow behavior. LCB-PLA exhibited a pronounced strain hardening, whereas no strain hardening was observed for the linear PLA. Batch foaming of the linear and LCB-PLAs was also examined at foaming temperatures of 130, 140, and 155 °C. The LCB structure significantly increased the integrity of the cells, cell density, and void fraction.
ISSN:0035-4511
1435-1528
DOI:10.1007/s00397-014-0801-3