An accurate method for solving crack problems with discontinuous crack-line tractions
A numerical method for the integration of the singular integral equation resulting from a surface crack with discontinuous tractions is presented. The crack is modelled as a pile-up of dislocations, and the dislocation density function is partitioned into three terms: A singular term due to the trac...
Gespeichert in:
Veröffentlicht in: | Computational mechanics 1997-05, Vol.19 (6), p.496-500 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 500 |
---|---|
container_issue | 6 |
container_start_page | 496 |
container_title | Computational mechanics |
container_volume | 19 |
creator | ANDREASEN, J. H KARIHALOO, B. L |
description | A numerical method for the integration of the singular integral equation resulting from a surface crack with discontinuous tractions is presented. The crack is modelled as a pile-up of dislocations, and the dislocation density function is partitioned into three terms: A singular term due to the traction discontinuity, a square-root-singular term from the crack tip, and a bounded and continuous residual term. By integrating the singular terms explicitly only a well-behaved residual dislocation density function has to be determined numerically, together with the intensity of the square-root-singular term. The method is applied to the determination of stress intensity factors for a surface crack growing towards, and through, a circular inclusion, and to a surface crack growing into a zone of phase-transformable material. |
doi_str_mv | 10.1007/s004660050198 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2261512026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2261512026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-70569534da4bad76c99c1c8f3eb676cccbdf112e77ddffccc2e3fd9e2593a1f43</originalsourceid><addsrcrecordid>eNpVkM1LAzEQxYMoWKtH7wG9rk6STbY5luIXFLzY85LNh03dJjXJKv73bmkRPM08-M2bx0PomsAdAWjuM0AtBAAHImcnaEJqRiuQtD5FEyDNrGpEw8_RRc4bAMJnjE_Qah6w0npIqli8tWUdDXYx4Rz7Lx_esU5Kf-Bdil1vtxl_-7LGxmcdQ_FhiEM-EFXvg8VlXIuPIV-iM6f6bK-Oc4pWjw9vi-dq-fr0spgvK00lLVUDXEjOaqPqTplGaCk10TPHbCdGpXVnHCHUNo0xzo2aWuaMtJRLpoir2RTdHHzHgJ-DzaXdxCGF8WVLqSCcUKBipKoDpVPMOVnX7pLfqvTTEmj3zbX_mhv526Orylr1Lqmgff47ovvMEtgv2ihu4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261512026</pqid></control><display><type>article</type><title>An accurate method for solving crack problems with discontinuous crack-line tractions</title><source>SpringerLink Journals - AutoHoldings</source><creator>ANDREASEN, J. H ; KARIHALOO, B. L</creator><creatorcontrib>ANDREASEN, J. H ; KARIHALOO, B. L</creatorcontrib><description>A numerical method for the integration of the singular integral equation resulting from a surface crack with discontinuous tractions is presented. The crack is modelled as a pile-up of dislocations, and the dislocation density function is partitioned into three terms: A singular term due to the traction discontinuity, a square-root-singular term from the crack tip, and a bounded and continuous residual term. By integrating the singular terms explicitly only a well-behaved residual dislocation density function has to be determined numerically, together with the intensity of the square-root-singular term. The method is applied to the determination of stress intensity factors for a surface crack growing towards, and through, a circular inclusion, and to a surface crack growing into a zone of phase-transformable material.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s004660050198</identifier><identifier>CODEN: CMMEEE</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Crack tips ; Discontinuity ; Dislocation density ; Exact sciences and technology ; Fracture mechanics (crack, fatigue, damage...) ; Fracture mechanics, fatigue and cracks ; Fundamental areas of phenomenology (including applications) ; Numerical methods ; Phase transitions ; Physics ; Singular integral equations ; Solid mechanics ; Stress intensity factors ; Structural and continuum mechanics ; Surface cracks</subject><ispartof>Computational mechanics, 1997-05, Vol.19 (6), p.496-500</ispartof><rights>1997 INIST-CNRS</rights><rights>Computational Mechanics is a copyright of Springer, (1997). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-70569534da4bad76c99c1c8f3eb676cccbdf112e77ddffccc2e3fd9e2593a1f43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2695390$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ANDREASEN, J. H</creatorcontrib><creatorcontrib>KARIHALOO, B. L</creatorcontrib><title>An accurate method for solving crack problems with discontinuous crack-line tractions</title><title>Computational mechanics</title><description>A numerical method for the integration of the singular integral equation resulting from a surface crack with discontinuous tractions is presented. The crack is modelled as a pile-up of dislocations, and the dislocation density function is partitioned into three terms: A singular term due to the traction discontinuity, a square-root-singular term from the crack tip, and a bounded and continuous residual term. By integrating the singular terms explicitly only a well-behaved residual dislocation density function has to be determined numerically, together with the intensity of the square-root-singular term. The method is applied to the determination of stress intensity factors for a surface crack growing towards, and through, a circular inclusion, and to a surface crack growing into a zone of phase-transformable material.</description><subject>Crack tips</subject><subject>Discontinuity</subject><subject>Dislocation density</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fracture mechanics, fatigue and cracks</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Numerical methods</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Singular integral equations</subject><subject>Solid mechanics</subject><subject>Stress intensity factors</subject><subject>Structural and continuum mechanics</subject><subject>Surface cracks</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkM1LAzEQxYMoWKtH7wG9rk6STbY5luIXFLzY85LNh03dJjXJKv73bmkRPM08-M2bx0PomsAdAWjuM0AtBAAHImcnaEJqRiuQtD5FEyDNrGpEw8_RRc4bAMJnjE_Qah6w0npIqli8tWUdDXYx4Rz7Lx_esU5Kf-Bdil1vtxl_-7LGxmcdQ_FhiEM-EFXvg8VlXIuPIV-iM6f6bK-Oc4pWjw9vi-dq-fr0spgvK00lLVUDXEjOaqPqTplGaCk10TPHbCdGpXVnHCHUNo0xzo2aWuaMtJRLpoir2RTdHHzHgJ-DzaXdxCGF8WVLqSCcUKBipKoDpVPMOVnX7pLfqvTTEmj3zbX_mhv526Orylr1Lqmgff47ovvMEtgv2ihu4g</recordid><startdate>19970501</startdate><enddate>19970501</enddate><creator>ANDREASEN, J. H</creator><creator>KARIHALOO, B. L</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>19970501</creationdate><title>An accurate method for solving crack problems with discontinuous crack-line tractions</title><author>ANDREASEN, J. H ; KARIHALOO, B. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-70569534da4bad76c99c1c8f3eb676cccbdf112e77ddffccc2e3fd9e2593a1f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Crack tips</topic><topic>Discontinuity</topic><topic>Dislocation density</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fracture mechanics, fatigue and cracks</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Numerical methods</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Singular integral equations</topic><topic>Solid mechanics</topic><topic>Stress intensity factors</topic><topic>Structural and continuum mechanics</topic><topic>Surface cracks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ANDREASEN, J. H</creatorcontrib><creatorcontrib>KARIHALOO, B. L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ANDREASEN, J. H</au><au>KARIHALOO, B. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An accurate method for solving crack problems with discontinuous crack-line tractions</atitle><jtitle>Computational mechanics</jtitle><date>1997-05-01</date><risdate>1997</risdate><volume>19</volume><issue>6</issue><spage>496</spage><epage>500</epage><pages>496-500</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><coden>CMMEEE</coden><abstract>A numerical method for the integration of the singular integral equation resulting from a surface crack with discontinuous tractions is presented. The crack is modelled as a pile-up of dislocations, and the dislocation density function is partitioned into three terms: A singular term due to the traction discontinuity, a square-root-singular term from the crack tip, and a bounded and continuous residual term. By integrating the singular terms explicitly only a well-behaved residual dislocation density function has to be determined numerically, together with the intensity of the square-root-singular term. The method is applied to the determination of stress intensity factors for a surface crack growing towards, and through, a circular inclusion, and to a surface crack growing into a zone of phase-transformable material.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s004660050198</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-7675 |
ispartof | Computational mechanics, 1997-05, Vol.19 (6), p.496-500 |
issn | 0178-7675 1432-0924 |
language | eng |
recordid | cdi_proquest_journals_2261512026 |
source | SpringerLink Journals - AutoHoldings |
subjects | Crack tips Discontinuity Dislocation density Exact sciences and technology Fracture mechanics (crack, fatigue, damage...) Fracture mechanics, fatigue and cracks Fundamental areas of phenomenology (including applications) Numerical methods Phase transitions Physics Singular integral equations Solid mechanics Stress intensity factors Structural and continuum mechanics Surface cracks |
title | An accurate method for solving crack problems with discontinuous crack-line tractions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20accurate%20method%20for%20solving%20crack%20problems%20with%20discontinuous%20crack-line%20tractions&rft.jtitle=Computational%20mechanics&rft.au=ANDREASEN,%20J.%20H&rft.date=1997-05-01&rft.volume=19&rft.issue=6&rft.spage=496&rft.epage=500&rft.pages=496-500&rft.issn=0178-7675&rft.eissn=1432-0924&rft.coden=CMMEEE&rft_id=info:doi/10.1007/s004660050198&rft_dat=%3Cproquest_cross%3E2261512026%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2261512026&rft_id=info:pmid/&rfr_iscdi=true |