An accurate method for solving crack problems with discontinuous crack-line tractions

A numerical method for the integration of the singular integral equation resulting from a surface crack with discontinuous tractions is presented. The crack is modelled as a pile-up of dislocations, and the dislocation density function is partitioned into three terms: A singular term due to the trac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics 1997-05, Vol.19 (6), p.496-500
Hauptverfasser: ANDREASEN, J. H, KARIHALOO, B. L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 500
container_issue 6
container_start_page 496
container_title Computational mechanics
container_volume 19
creator ANDREASEN, J. H
KARIHALOO, B. L
description A numerical method for the integration of the singular integral equation resulting from a surface crack with discontinuous tractions is presented. The crack is modelled as a pile-up of dislocations, and the dislocation density function is partitioned into three terms: A singular term due to the traction discontinuity, a square-root-singular term from the crack tip, and a bounded and continuous residual term. By integrating the singular terms explicitly only a well-behaved residual dislocation density function has to be determined numerically, together with the intensity of the square-root-singular term. The method is applied to the determination of stress intensity factors for a surface crack growing towards, and through, a circular inclusion, and to a surface crack growing into a zone of phase-transformable material.
doi_str_mv 10.1007/s004660050198
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2261512026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2261512026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-70569534da4bad76c99c1c8f3eb676cccbdf112e77ddffccc2e3fd9e2593a1f43</originalsourceid><addsrcrecordid>eNpVkM1LAzEQxYMoWKtH7wG9rk6STbY5luIXFLzY85LNh03dJjXJKv73bmkRPM08-M2bx0PomsAdAWjuM0AtBAAHImcnaEJqRiuQtD5FEyDNrGpEw8_RRc4bAMJnjE_Qah6w0npIqli8tWUdDXYx4Rz7Lx_esU5Kf-Bdil1vtxl_-7LGxmcdQ_FhiEM-EFXvg8VlXIuPIV-iM6f6bK-Oc4pWjw9vi-dq-fr0spgvK00lLVUDXEjOaqPqTplGaCk10TPHbCdGpXVnHCHUNo0xzo2aWuaMtJRLpoir2RTdHHzHgJ-DzaXdxCGF8WVLqSCcUKBipKoDpVPMOVnX7pLfqvTTEmj3zbX_mhv526Orylr1Lqmgff47ovvMEtgv2ihu4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261512026</pqid></control><display><type>article</type><title>An accurate method for solving crack problems with discontinuous crack-line tractions</title><source>SpringerLink Journals - AutoHoldings</source><creator>ANDREASEN, J. H ; KARIHALOO, B. L</creator><creatorcontrib>ANDREASEN, J. H ; KARIHALOO, B. L</creatorcontrib><description>A numerical method for the integration of the singular integral equation resulting from a surface crack with discontinuous tractions is presented. The crack is modelled as a pile-up of dislocations, and the dislocation density function is partitioned into three terms: A singular term due to the traction discontinuity, a square-root-singular term from the crack tip, and a bounded and continuous residual term. By integrating the singular terms explicitly only a well-behaved residual dislocation density function has to be determined numerically, together with the intensity of the square-root-singular term. The method is applied to the determination of stress intensity factors for a surface crack growing towards, and through, a circular inclusion, and to a surface crack growing into a zone of phase-transformable material.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s004660050198</identifier><identifier>CODEN: CMMEEE</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Crack tips ; Discontinuity ; Dislocation density ; Exact sciences and technology ; Fracture mechanics (crack, fatigue, damage...) ; Fracture mechanics, fatigue and cracks ; Fundamental areas of phenomenology (including applications) ; Numerical methods ; Phase transitions ; Physics ; Singular integral equations ; Solid mechanics ; Stress intensity factors ; Structural and continuum mechanics ; Surface cracks</subject><ispartof>Computational mechanics, 1997-05, Vol.19 (6), p.496-500</ispartof><rights>1997 INIST-CNRS</rights><rights>Computational Mechanics is a copyright of Springer, (1997). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-70569534da4bad76c99c1c8f3eb676cccbdf112e77ddffccc2e3fd9e2593a1f43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2695390$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ANDREASEN, J. H</creatorcontrib><creatorcontrib>KARIHALOO, B. L</creatorcontrib><title>An accurate method for solving crack problems with discontinuous crack-line tractions</title><title>Computational mechanics</title><description>A numerical method for the integration of the singular integral equation resulting from a surface crack with discontinuous tractions is presented. The crack is modelled as a pile-up of dislocations, and the dislocation density function is partitioned into three terms: A singular term due to the traction discontinuity, a square-root-singular term from the crack tip, and a bounded and continuous residual term. By integrating the singular terms explicitly only a well-behaved residual dislocation density function has to be determined numerically, together with the intensity of the square-root-singular term. The method is applied to the determination of stress intensity factors for a surface crack growing towards, and through, a circular inclusion, and to a surface crack growing into a zone of phase-transformable material.</description><subject>Crack tips</subject><subject>Discontinuity</subject><subject>Dislocation density</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fracture mechanics, fatigue and cracks</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Numerical methods</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Singular integral equations</subject><subject>Solid mechanics</subject><subject>Stress intensity factors</subject><subject>Structural and continuum mechanics</subject><subject>Surface cracks</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkM1LAzEQxYMoWKtH7wG9rk6STbY5luIXFLzY85LNh03dJjXJKv73bmkRPM08-M2bx0PomsAdAWjuM0AtBAAHImcnaEJqRiuQtD5FEyDNrGpEw8_RRc4bAMJnjE_Qah6w0npIqli8tWUdDXYx4Rz7Lx_esU5Kf-Bdil1vtxl_-7LGxmcdQ_FhiEM-EFXvg8VlXIuPIV-iM6f6bK-Oc4pWjw9vi-dq-fr0spgvK00lLVUDXEjOaqPqTplGaCk10TPHbCdGpXVnHCHUNo0xzo2aWuaMtJRLpoir2RTdHHzHgJ-DzaXdxCGF8WVLqSCcUKBipKoDpVPMOVnX7pLfqvTTEmj3zbX_mhv526Orylr1Lqmgff47ovvMEtgv2ihu4g</recordid><startdate>19970501</startdate><enddate>19970501</enddate><creator>ANDREASEN, J. H</creator><creator>KARIHALOO, B. L</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>19970501</creationdate><title>An accurate method for solving crack problems with discontinuous crack-line tractions</title><author>ANDREASEN, J. H ; KARIHALOO, B. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-70569534da4bad76c99c1c8f3eb676cccbdf112e77ddffccc2e3fd9e2593a1f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Crack tips</topic><topic>Discontinuity</topic><topic>Dislocation density</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fracture mechanics, fatigue and cracks</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Numerical methods</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Singular integral equations</topic><topic>Solid mechanics</topic><topic>Stress intensity factors</topic><topic>Structural and continuum mechanics</topic><topic>Surface cracks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ANDREASEN, J. H</creatorcontrib><creatorcontrib>KARIHALOO, B. L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ANDREASEN, J. H</au><au>KARIHALOO, B. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An accurate method for solving crack problems with discontinuous crack-line tractions</atitle><jtitle>Computational mechanics</jtitle><date>1997-05-01</date><risdate>1997</risdate><volume>19</volume><issue>6</issue><spage>496</spage><epage>500</epage><pages>496-500</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><coden>CMMEEE</coden><abstract>A numerical method for the integration of the singular integral equation resulting from a surface crack with discontinuous tractions is presented. The crack is modelled as a pile-up of dislocations, and the dislocation density function is partitioned into three terms: A singular term due to the traction discontinuity, a square-root-singular term from the crack tip, and a bounded and continuous residual term. By integrating the singular terms explicitly only a well-behaved residual dislocation density function has to be determined numerically, together with the intensity of the square-root-singular term. The method is applied to the determination of stress intensity factors for a surface crack growing towards, and through, a circular inclusion, and to a surface crack growing into a zone of phase-transformable material.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s004660050198</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 1997-05, Vol.19 (6), p.496-500
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_journals_2261512026
source SpringerLink Journals - AutoHoldings
subjects Crack tips
Discontinuity
Dislocation density
Exact sciences and technology
Fracture mechanics (crack, fatigue, damage...)
Fracture mechanics, fatigue and cracks
Fundamental areas of phenomenology (including applications)
Numerical methods
Phase transitions
Physics
Singular integral equations
Solid mechanics
Stress intensity factors
Structural and continuum mechanics
Surface cracks
title An accurate method for solving crack problems with discontinuous crack-line tractions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20accurate%20method%20for%20solving%20crack%20problems%20with%20discontinuous%20crack-line%20tractions&rft.jtitle=Computational%20mechanics&rft.au=ANDREASEN,%20J.%20H&rft.date=1997-05-01&rft.volume=19&rft.issue=6&rft.spage=496&rft.epage=500&rft.pages=496-500&rft.issn=0178-7675&rft.eissn=1432-0924&rft.coden=CMMEEE&rft_id=info:doi/10.1007/s004660050198&rft_dat=%3Cproquest_cross%3E2261512026%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2261512026&rft_id=info:pmid/&rfr_iscdi=true