An accurate method for solving crack problems with discontinuous crack-line tractions
A numerical method for the integration of the singular integral equation resulting from a surface crack with discontinuous tractions is presented. The crack is modelled as a pile-up of dislocations, and the dislocation density function is partitioned into three terms: A singular term due to the trac...
Gespeichert in:
Veröffentlicht in: | Computational mechanics 1997-05, Vol.19 (6), p.496-500 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A numerical method for the integration of the singular integral equation resulting from a surface crack with discontinuous tractions is presented. The crack is modelled as a pile-up of dislocations, and the dislocation density function is partitioned into three terms: A singular term due to the traction discontinuity, a square-root-singular term from the crack tip, and a bounded and continuous residual term. By integrating the singular terms explicitly only a well-behaved residual dislocation density function has to be determined numerically, together with the intensity of the square-root-singular term. The method is applied to the determination of stress intensity factors for a surface crack growing towards, and through, a circular inclusion, and to a surface crack growing into a zone of phase-transformable material. |
---|---|
ISSN: | 0178-7675 1432-0924 |
DOI: | 10.1007/s004660050198 |