Discontinuous modelling of masonry bridges

Computational modelling frameworks for masonry bridges range from highly simplified methods to complex nonlinear finite element or discrete elements. In majority of cases the macro level nonlinear finite element models1 and homogenisation techniques are adopted. Attention has also been given to asse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics 2003-05, Vol.31 (1-2), p.60-68
Hauptverfasser: BICANIC, N, STIRLING, C, PEARCE, C. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 1-2
container_start_page 60
container_title Computational mechanics
container_volume 31
creator BICANIC, N
STIRLING, C
PEARCE, C. J
description Computational modelling frameworks for masonry bridges range from highly simplified methods to complex nonlinear finite element or discrete elements. In majority of cases the macro level nonlinear finite element models1 and homogenisation techniques are adopted. Attention has also been given to assessment methodologies (discrete element method, rigid block spring method, lattice modelling, discontinuous deformation analysis, combined discrete/finite elements), which deal more directly with the discontinuous nature of structural masonry in a simplified micro modeling manner. These methods model an inherently discontinuous medium, but are also applied to problems where the transition from a continuum to discontinuum is important. Principal computational issue is the treatment of large number of distinct interacting domains, where the contact conditions are continuously updated and enforced as the solution progresses. Modelling of masonry arches requires a consideration of deformable multi-bodies and their contact nonlinearity, which is here realised in the context of the discontinuous deformation analysis, based on an assumed deformation field within distinct domains of arbitrary shapes with a rigorous imposition of contact constraints.
doi_str_mv 10.1007/s00466-002-0393-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2261510951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2261510951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-af8954bd7a73e629c1ab20b940ac2467d9f1b8722500249a01d6d8dd8cfc4f63</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKs_wNuCeBGik-_kKPUTCl56D9lkU7ZsNzXpHvrvTWnBOcww8M77Dg9C9wSeCYB6KQBcSgxAMTDDMFygGeGsbobySzQDojRWUolrdFPKBoAIzcQMPb31xadx349TmkqzTaEbhn5cNyk2W1fSmA9Nm_uw7sotuopuKN3dec7R6uN9tfjCy5_P78XrEnsGZI9d1EbwNiinWCep8cS1FFrDwXnKpQomklYrSkV9lhsHJMigQ9A-eh4lm6OHk-0up9-pK3u7SVMea6KlVBJBwAhSVeSk8jmVkrtod7nfunywBOyRiD0RsTXEHonUNkePZ2dXvBtidqPvy_8h11TXYn8tKV9e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261510951</pqid></control><display><type>article</type><title>Discontinuous modelling of masonry bridges</title><source>Springer Nature - Complete Springer Journals</source><creator>BICANIC, N ; STIRLING, C ; PEARCE, C. J</creator><creatorcontrib>BICANIC, N ; STIRLING, C ; PEARCE, C. J</creatorcontrib><description>Computational modelling frameworks for masonry bridges range from highly simplified methods to complex nonlinear finite element or discrete elements. In majority of cases the macro level nonlinear finite element models1 and homogenisation techniques are adopted. Attention has also been given to assessment methodologies (discrete element method, rigid block spring method, lattice modelling, discontinuous deformation analysis, combined discrete/finite elements), which deal more directly with the discontinuous nature of structural masonry in a simplified micro modeling manner. These methods model an inherently discontinuous medium, but are also applied to problems where the transition from a continuum to discontinuum is important. Principal computational issue is the treatment of large number of distinct interacting domains, where the contact conditions are continuously updated and enforced as the solution progresses. Modelling of masonry arches requires a consideration of deformable multi-bodies and their contact nonlinearity, which is here realised in the context of the discontinuous deformation analysis, based on an assumed deformation field within distinct domains of arbitrary shapes with a rigorous imposition of contact constraints.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-002-0393-0</identifier><identifier>CODEN: CMMEEE</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Applied sciences ; Arches ; Bridges ; Buildings. Public works ; Computation ; Computation methods. Tables. Charts ; Computational techniques ; Deformation analysis ; Discrete element method ; Domains ; Exact sciences and technology ; Finite element method ; Formability ; Masonry ; Mathematical analysis ; Mathematical methods in physics ; Nonlinearity ; Physics ; Structural analysis. Stresses</subject><ispartof>Computational mechanics, 2003-05, Vol.31 (1-2), p.60-68</ispartof><rights>2003 INIST-CNRS</rights><rights>Computational Mechanics is a copyright of Springer, (2003). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-af8954bd7a73e629c1ab20b940ac2467d9f1b8722500249a01d6d8dd8cfc4f63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14828888$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BICANIC, N</creatorcontrib><creatorcontrib>STIRLING, C</creatorcontrib><creatorcontrib>PEARCE, C. J</creatorcontrib><title>Discontinuous modelling of masonry bridges</title><title>Computational mechanics</title><description>Computational modelling frameworks for masonry bridges range from highly simplified methods to complex nonlinear finite element or discrete elements. In majority of cases the macro level nonlinear finite element models1 and homogenisation techniques are adopted. Attention has also been given to assessment methodologies (discrete element method, rigid block spring method, lattice modelling, discontinuous deformation analysis, combined discrete/finite elements), which deal more directly with the discontinuous nature of structural masonry in a simplified micro modeling manner. These methods model an inherently discontinuous medium, but are also applied to problems where the transition from a continuum to discontinuum is important. Principal computational issue is the treatment of large number of distinct interacting domains, where the contact conditions are continuously updated and enforced as the solution progresses. Modelling of masonry arches requires a consideration of deformable multi-bodies and their contact nonlinearity, which is here realised in the context of the discontinuous deformation analysis, based on an assumed deformation field within distinct domains of arbitrary shapes with a rigorous imposition of contact constraints.</description><subject>Applied sciences</subject><subject>Arches</subject><subject>Bridges</subject><subject>Buildings. Public works</subject><subject>Computation</subject><subject>Computation methods. Tables. Charts</subject><subject>Computational techniques</subject><subject>Deformation analysis</subject><subject>Discrete element method</subject><subject>Domains</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Formability</subject><subject>Masonry</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Structural analysis. Stresses</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpFkE1LAzEQhoMoWKs_wNuCeBGik-_kKPUTCl56D9lkU7ZsNzXpHvrvTWnBOcww8M77Dg9C9wSeCYB6KQBcSgxAMTDDMFygGeGsbobySzQDojRWUolrdFPKBoAIzcQMPb31xadx349TmkqzTaEbhn5cNyk2W1fSmA9Nm_uw7sotuopuKN3dec7R6uN9tfjCy5_P78XrEnsGZI9d1EbwNiinWCep8cS1FFrDwXnKpQomklYrSkV9lhsHJMigQ9A-eh4lm6OHk-0up9-pK3u7SVMea6KlVBJBwAhSVeSk8jmVkrtod7nfunywBOyRiD0RsTXEHonUNkePZ2dXvBtidqPvy_8h11TXYn8tKV9e</recordid><startdate>20030501</startdate><enddate>20030501</enddate><creator>BICANIC, N</creator><creator>STIRLING, C</creator><creator>PEARCE, C. J</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20030501</creationdate><title>Discontinuous modelling of masonry bridges</title><author>BICANIC, N ; STIRLING, C ; PEARCE, C. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-af8954bd7a73e629c1ab20b940ac2467d9f1b8722500249a01d6d8dd8cfc4f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Arches</topic><topic>Bridges</topic><topic>Buildings. Public works</topic><topic>Computation</topic><topic>Computation methods. Tables. Charts</topic><topic>Computational techniques</topic><topic>Deformation analysis</topic><topic>Discrete element method</topic><topic>Domains</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Formability</topic><topic>Masonry</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Structural analysis. Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BICANIC, N</creatorcontrib><creatorcontrib>STIRLING, C</creatorcontrib><creatorcontrib>PEARCE, C. J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BICANIC, N</au><au>STIRLING, C</au><au>PEARCE, C. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discontinuous modelling of masonry bridges</atitle><jtitle>Computational mechanics</jtitle><date>2003-05-01</date><risdate>2003</risdate><volume>31</volume><issue>1-2</issue><spage>60</spage><epage>68</epage><pages>60-68</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><coden>CMMEEE</coden><abstract>Computational modelling frameworks for masonry bridges range from highly simplified methods to complex nonlinear finite element or discrete elements. In majority of cases the macro level nonlinear finite element models1 and homogenisation techniques are adopted. Attention has also been given to assessment methodologies (discrete element method, rigid block spring method, lattice modelling, discontinuous deformation analysis, combined discrete/finite elements), which deal more directly with the discontinuous nature of structural masonry in a simplified micro modeling manner. These methods model an inherently discontinuous medium, but are also applied to problems where the transition from a continuum to discontinuum is important. Principal computational issue is the treatment of large number of distinct interacting domains, where the contact conditions are continuously updated and enforced as the solution progresses. Modelling of masonry arches requires a consideration of deformable multi-bodies and their contact nonlinearity, which is here realised in the context of the discontinuous deformation analysis, based on an assumed deformation field within distinct domains of arbitrary shapes with a rigorous imposition of contact constraints.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s00466-002-0393-0</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2003-05, Vol.31 (1-2), p.60-68
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_journals_2261510951
source Springer Nature - Complete Springer Journals
subjects Applied sciences
Arches
Bridges
Buildings. Public works
Computation
Computation methods. Tables. Charts
Computational techniques
Deformation analysis
Discrete element method
Domains
Exact sciences and technology
Finite element method
Formability
Masonry
Mathematical analysis
Mathematical methods in physics
Nonlinearity
Physics
Structural analysis. Stresses
title Discontinuous modelling of masonry bridges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discontinuous%20modelling%20of%20masonry%20bridges&rft.jtitle=Computational%20mechanics&rft.au=BICANIC,%20N&rft.date=2003-05-01&rft.volume=31&rft.issue=1-2&rft.spage=60&rft.epage=68&rft.pages=60-68&rft.issn=0178-7675&rft.eissn=1432-0924&rft.coden=CMMEEE&rft_id=info:doi/10.1007/s00466-002-0393-0&rft_dat=%3Cproquest_cross%3E2261510951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2261510951&rft_id=info:pmid/&rfr_iscdi=true