Discontinuous modelling of masonry bridges
Computational modelling frameworks for masonry bridges range from highly simplified methods to complex nonlinear finite element or discrete elements. In majority of cases the macro level nonlinear finite element models1 and homogenisation techniques are adopted. Attention has also been given to asse...
Gespeichert in:
Veröffentlicht in: | Computational mechanics 2003-05, Vol.31 (1-2), p.60-68 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 68 |
---|---|
container_issue | 1-2 |
container_start_page | 60 |
container_title | Computational mechanics |
container_volume | 31 |
creator | BICANIC, N STIRLING, C PEARCE, C. J |
description | Computational modelling frameworks for masonry bridges range from highly simplified methods to complex nonlinear finite element or discrete elements. In majority of cases the macro level nonlinear finite element models1 and homogenisation techniques are adopted. Attention has also been given to assessment methodologies (discrete element method, rigid block spring method, lattice modelling, discontinuous deformation analysis, combined discrete/finite elements), which deal more directly with the discontinuous nature of structural masonry in a simplified micro modeling manner. These methods model an inherently discontinuous medium, but are also applied to problems where the transition from a continuum to discontinuum is important. Principal computational issue is the treatment of large number of distinct interacting domains, where the contact conditions are continuously updated and enforced as the solution progresses. Modelling of masonry arches requires a consideration of deformable multi-bodies and their contact nonlinearity, which is here realised in the context of the discontinuous deformation analysis, based on an assumed deformation field within distinct domains of arbitrary shapes with a rigorous imposition of contact constraints. |
doi_str_mv | 10.1007/s00466-002-0393-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2261510951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2261510951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-af8954bd7a73e629c1ab20b940ac2467d9f1b8722500249a01d6d8dd8cfc4f63</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKs_wNuCeBGik-_kKPUTCl56D9lkU7ZsNzXpHvrvTWnBOcww8M77Dg9C9wSeCYB6KQBcSgxAMTDDMFygGeGsbobySzQDojRWUolrdFPKBoAIzcQMPb31xadx349TmkqzTaEbhn5cNyk2W1fSmA9Nm_uw7sotuopuKN3dec7R6uN9tfjCy5_P78XrEnsGZI9d1EbwNiinWCep8cS1FFrDwXnKpQomklYrSkV9lhsHJMigQ9A-eh4lm6OHk-0up9-pK3u7SVMea6KlVBJBwAhSVeSk8jmVkrtod7nfunywBOyRiD0RsTXEHonUNkePZ2dXvBtidqPvy_8h11TXYn8tKV9e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261510951</pqid></control><display><type>article</type><title>Discontinuous modelling of masonry bridges</title><source>Springer Nature - Complete Springer Journals</source><creator>BICANIC, N ; STIRLING, C ; PEARCE, C. J</creator><creatorcontrib>BICANIC, N ; STIRLING, C ; PEARCE, C. J</creatorcontrib><description>Computational modelling frameworks for masonry bridges range from highly simplified methods to complex nonlinear finite element or discrete elements. In majority of cases the macro level nonlinear finite element models1 and homogenisation techniques are adopted. Attention has also been given to assessment methodologies (discrete element method, rigid block spring method, lattice modelling, discontinuous deformation analysis, combined discrete/finite elements), which deal more directly with the discontinuous nature of structural masonry in a simplified micro modeling manner. These methods model an inherently discontinuous medium, but are also applied to problems where the transition from a continuum to discontinuum is important. Principal computational issue is the treatment of large number of distinct interacting domains, where the contact conditions are continuously updated and enforced as the solution progresses. Modelling of masonry arches requires a consideration of deformable multi-bodies and their contact nonlinearity, which is here realised in the context of the discontinuous deformation analysis, based on an assumed deformation field within distinct domains of arbitrary shapes with a rigorous imposition of contact constraints.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-002-0393-0</identifier><identifier>CODEN: CMMEEE</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Applied sciences ; Arches ; Bridges ; Buildings. Public works ; Computation ; Computation methods. Tables. Charts ; Computational techniques ; Deformation analysis ; Discrete element method ; Domains ; Exact sciences and technology ; Finite element method ; Formability ; Masonry ; Mathematical analysis ; Mathematical methods in physics ; Nonlinearity ; Physics ; Structural analysis. Stresses</subject><ispartof>Computational mechanics, 2003-05, Vol.31 (1-2), p.60-68</ispartof><rights>2003 INIST-CNRS</rights><rights>Computational Mechanics is a copyright of Springer, (2003). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-af8954bd7a73e629c1ab20b940ac2467d9f1b8722500249a01d6d8dd8cfc4f63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14828888$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BICANIC, N</creatorcontrib><creatorcontrib>STIRLING, C</creatorcontrib><creatorcontrib>PEARCE, C. J</creatorcontrib><title>Discontinuous modelling of masonry bridges</title><title>Computational mechanics</title><description>Computational modelling frameworks for masonry bridges range from highly simplified methods to complex nonlinear finite element or discrete elements. In majority of cases the macro level nonlinear finite element models1 and homogenisation techniques are adopted. Attention has also been given to assessment methodologies (discrete element method, rigid block spring method, lattice modelling, discontinuous deformation analysis, combined discrete/finite elements), which deal more directly with the discontinuous nature of structural masonry in a simplified micro modeling manner. These methods model an inherently discontinuous medium, but are also applied to problems where the transition from a continuum to discontinuum is important. Principal computational issue is the treatment of large number of distinct interacting domains, where the contact conditions are continuously updated and enforced as the solution progresses. Modelling of masonry arches requires a consideration of deformable multi-bodies and their contact nonlinearity, which is here realised in the context of the discontinuous deformation analysis, based on an assumed deformation field within distinct domains of arbitrary shapes with a rigorous imposition of contact constraints.</description><subject>Applied sciences</subject><subject>Arches</subject><subject>Bridges</subject><subject>Buildings. Public works</subject><subject>Computation</subject><subject>Computation methods. Tables. Charts</subject><subject>Computational techniques</subject><subject>Deformation analysis</subject><subject>Discrete element method</subject><subject>Domains</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Formability</subject><subject>Masonry</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Structural analysis. Stresses</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpFkE1LAzEQhoMoWKs_wNuCeBGik-_kKPUTCl56D9lkU7ZsNzXpHvrvTWnBOcww8M77Dg9C9wSeCYB6KQBcSgxAMTDDMFygGeGsbobySzQDojRWUolrdFPKBoAIzcQMPb31xadx349TmkqzTaEbhn5cNyk2W1fSmA9Nm_uw7sotuopuKN3dec7R6uN9tfjCy5_P78XrEnsGZI9d1EbwNiinWCep8cS1FFrDwXnKpQomklYrSkV9lhsHJMigQ9A-eh4lm6OHk-0up9-pK3u7SVMea6KlVBJBwAhSVeSk8jmVkrtod7nfunywBOyRiD0RsTXEHonUNkePZ2dXvBtidqPvy_8h11TXYn8tKV9e</recordid><startdate>20030501</startdate><enddate>20030501</enddate><creator>BICANIC, N</creator><creator>STIRLING, C</creator><creator>PEARCE, C. J</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20030501</creationdate><title>Discontinuous modelling of masonry bridges</title><author>BICANIC, N ; STIRLING, C ; PEARCE, C. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-af8954bd7a73e629c1ab20b940ac2467d9f1b8722500249a01d6d8dd8cfc4f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Arches</topic><topic>Bridges</topic><topic>Buildings. Public works</topic><topic>Computation</topic><topic>Computation methods. Tables. Charts</topic><topic>Computational techniques</topic><topic>Deformation analysis</topic><topic>Discrete element method</topic><topic>Domains</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Formability</topic><topic>Masonry</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Structural analysis. Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BICANIC, N</creatorcontrib><creatorcontrib>STIRLING, C</creatorcontrib><creatorcontrib>PEARCE, C. J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BICANIC, N</au><au>STIRLING, C</au><au>PEARCE, C. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discontinuous modelling of masonry bridges</atitle><jtitle>Computational mechanics</jtitle><date>2003-05-01</date><risdate>2003</risdate><volume>31</volume><issue>1-2</issue><spage>60</spage><epage>68</epage><pages>60-68</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><coden>CMMEEE</coden><abstract>Computational modelling frameworks for masonry bridges range from highly simplified methods to complex nonlinear finite element or discrete elements. In majority of cases the macro level nonlinear finite element models1 and homogenisation techniques are adopted. Attention has also been given to assessment methodologies (discrete element method, rigid block spring method, lattice modelling, discontinuous deformation analysis, combined discrete/finite elements), which deal more directly with the discontinuous nature of structural masonry in a simplified micro modeling manner. These methods model an inherently discontinuous medium, but are also applied to problems where the transition from a continuum to discontinuum is important. Principal computational issue is the treatment of large number of distinct interacting domains, where the contact conditions are continuously updated and enforced as the solution progresses. Modelling of masonry arches requires a consideration of deformable multi-bodies and their contact nonlinearity, which is here realised in the context of the discontinuous deformation analysis, based on an assumed deformation field within distinct domains of arbitrary shapes with a rigorous imposition of contact constraints.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s00466-002-0393-0</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-7675 |
ispartof | Computational mechanics, 2003-05, Vol.31 (1-2), p.60-68 |
issn | 0178-7675 1432-0924 |
language | eng |
recordid | cdi_proquest_journals_2261510951 |
source | Springer Nature - Complete Springer Journals |
subjects | Applied sciences Arches Bridges Buildings. Public works Computation Computation methods. Tables. Charts Computational techniques Deformation analysis Discrete element method Domains Exact sciences and technology Finite element method Formability Masonry Mathematical analysis Mathematical methods in physics Nonlinearity Physics Structural analysis. Stresses |
title | Discontinuous modelling of masonry bridges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discontinuous%20modelling%20of%20masonry%20bridges&rft.jtitle=Computational%20mechanics&rft.au=BICANIC,%20N&rft.date=2003-05-01&rft.volume=31&rft.issue=1-2&rft.spage=60&rft.epage=68&rft.pages=60-68&rft.issn=0178-7675&rft.eissn=1432-0924&rft.coden=CMMEEE&rft_id=info:doi/10.1007/s00466-002-0393-0&rft_dat=%3Cproquest_cross%3E2261510951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2261510951&rft_id=info:pmid/&rfr_iscdi=true |