Discontinuous modelling of masonry bridges

Computational modelling frameworks for masonry bridges range from highly simplified methods to complex nonlinear finite element or discrete elements. In majority of cases the macro level nonlinear finite element models1 and homogenisation techniques are adopted. Attention has also been given to asse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics 2003-05, Vol.31 (1-2), p.60-68
Hauptverfasser: BICANIC, N, STIRLING, C, PEARCE, C. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Computational modelling frameworks for masonry bridges range from highly simplified methods to complex nonlinear finite element or discrete elements. In majority of cases the macro level nonlinear finite element models1 and homogenisation techniques are adopted. Attention has also been given to assessment methodologies (discrete element method, rigid block spring method, lattice modelling, discontinuous deformation analysis, combined discrete/finite elements), which deal more directly with the discontinuous nature of structural masonry in a simplified micro modeling manner. These methods model an inherently discontinuous medium, but are also applied to problems where the transition from a continuum to discontinuum is important. Principal computational issue is the treatment of large number of distinct interacting domains, where the contact conditions are continuously updated and enforced as the solution progresses. Modelling of masonry arches requires a consideration of deformable multi-bodies and their contact nonlinearity, which is here realised in the context of the discontinuous deformation analysis, based on an assumed deformation field within distinct domains of arbitrary shapes with a rigorous imposition of contact constraints.
ISSN:0178-7675
1432-0924
DOI:10.1007/s00466-002-0393-0