On the Analysis of an EFG Method Under Large Deformations and Volumetric Locking
This work investigates a modified element-free Galerkin (MEFG) method when applied to large deformation processes. The proposed EFG method enables the direct imposition of the essential boundary conditions, as a result of the kronecker delta property of the special shape functions, constructed in th...
Gespeichert in:
Veröffentlicht in: | Computational mechanics 2007-03, Vol.39 (4), p.381-399 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work investigates a modified element-free Galerkin (MEFG) method when applied to large deformation processes. The proposed EFG method enables the direct imposition of the essential boundary conditions, as a result of the kronecker delta property of the special shape functions, constructed in the neighborhood of the essential boundary. The plasticity model assumes a multiplicative decomposition of the deformation gradient into an elastic and a plastic part and considers a J2 elasto-plastic constitutive relation that accounts for a nonlinear isotropic hardening. The constitutive model is written in terms of the rotated Kirchhoff stress and of the conjugate logarithmic strain measure. A total Lagrangian formulation is considered in order to improve the computational performance of the proposed algorithm. Here, aspects related to the volumetric locking are numerically investigated and an F-bar approach is considered. Some numerical results are presented, under axisymmetric and plane strain assumption, in order to attest the performance of the proposed method. |
---|---|
ISSN: | 0178-7675 1432-0924 |
DOI: | 10.1007/s00466-006-0035-z |