Efficient elastoplastic analysis with the boundary element method
Conventional numerical implementation of the boundary element method (BEM) for elasto-plastic analysis requires a domain discretization into cells. This requires more effort for the discretization of the problem and additional computational effort. A new technique is proposed here for the analysis o...
Gespeichert in:
Veröffentlicht in: | Computational mechanics 2008-02, Vol.41 (5), p.715-732 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Conventional numerical implementation of the boundary element method (BEM) for elasto-plastic analysis requires a domain discretization into cells. This requires more effort for the discretization of the problem and additional computational effort. A new technique is proposed here for the analysis of 2D and 3D elasto-plastic problems with the boundary element method. In this approach the domain does not need to be discretised into cells prior to the analysis. Plasticity is assumed to start from the boundary and the cells are generated from the boundary data automatically during the analysis. Using the cell generation process, elasto-plastic analysis with the BEM becomes much more user friendly and efficient than the standard approach with a pre-definition of cells. The accuracy and efficiency of the solution obtained by the new approach is verified by several numerical examples. |
---|---|
ISSN: | 0178-7675 1432-0924 |
DOI: | 10.1007/s00466-007-0227-1 |