The Influence of Thermal Properties and Canopy- Intercepted Snow on Passive Microwave Transmissivity of a Scots Pine

While many microwave studies related to tree emission have been undertaken, a few have considered the effect of phenological change on the emission from coniferous trees. The permittivity of vegetation tissue is known to be influenced by water content, while the water content and phase is sensitive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2019-08, Vol.57 (8), p.5424-5433
Hauptverfasser: Li, Qinghuan, Kelly, Richard, Leppanen, Leena, Vehvilainen, Juho, Kontu, Anna, Lemmetyinen, Juha, Pulliainen, Jouni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While many microwave studies related to tree emission have been undertaken, a few have considered the effect of phenological change on the emission from coniferous trees. The permittivity of vegetation tissue is known to be influenced by water content, while the water content and phase is sensitive to temperature in particular at temperatures below freezing. In addition to temperature, canopy-intercepted snow might also modify the tree emission and transmissivity in the microwave range. In this paper, a season-long experiment was designed to quantify the effect of snow accumulation and temperature on the observed microwave transmissivity from tree. A ground-based, upward-pointing multifrequency radiometer was used to monitor the microwave emissivity of a single coniferous tree at a site in Northern Finland. Radiometer measurements were combined with measurements of the canopy-intercepted snow cover and tree skin temperature. This paper presents two important findings. First, the tree transmissivity was strongly correlated with tree skin temperature under subzero temperature conditions, but uncorrelated with skin temperature changes above freezing. Second, although the tree transmissivity was slightly affected by the snow accumulation on the tree canopy, the overall influence on tree emission was statistically insignificant in this paper.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2019.2899345