Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves

Ten, widely-used vegetation indices (VIs), based on mathematical combinations of narrow-band optical reflectance measurements in the visible/near infrared wavelength range were evaluated for their ability to discriminate leaves of 1 month old wheat plants infected with yellow (stripe), leaf and stem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Precision agriculture 2009-12, Vol.10 (6), p.459-470
Hauptverfasser: Devadas, R, Lamb, D. W, Simpfendorfer, S, Backhouse, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 470
container_issue 6
container_start_page 459
container_title Precision agriculture
container_volume 10
creator Devadas, R
Lamb, D. W
Simpfendorfer, S
Backhouse, D
description Ten, widely-used vegetation indices (VIs), based on mathematical combinations of narrow-band optical reflectance measurements in the visible/near infrared wavelength range were evaluated for their ability to discriminate leaves of 1 month old wheat plants infected with yellow (stripe), leaf and stem rust. Narrow band indices representing changes in non-chlorophyll pigment concentration and the ratio of non-chlorophyll to chlorophyll pigments proved more reliable in discriminating rust infected leaves from healthy plant tissue. Yellow rust produced the strongest response in all the calculated indices when compared to healthy leaves. No single index was capable of discriminating all three rust species from each other. However the sequential application of the Anthocyanin Reflectance Index to separate healthy, yellow and mixed stem rust/leaf rust classes followed by the Transformed Chlorophyll Absorption and Reflectance Index to separate leaf and stem rust classes would provide for the required species discrimination under laboratory conditions and thus could form the basis of rust species discrimination in wheat under field conditions.
doi_str_mv 10.1007/s11119-008-9100-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_226030340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1900891321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-a01e0947abad7803ac91c32491fcdebcd2c17c277c853f5b1cd127c4ca5fcc123</originalsourceid><addsrcrecordid>eNp9kM1KxDAURoMoOI4-gCuL--i9Sdu0SxnGHxBc6KxDJk1qh9qOSVqZtze1gjuzSbg557vwEXKJcIMA4tZjPCUFKGgZB5QdkQVmglPMsTiOb15klLEsPyVn3u8AIpSyBanWo2oHFZquToLpEr83OjjVJqOpTYjzvkuarmq08YntXdJUpguNPUy8G3yInzYaM_ZDjk01RP_r3aiQtEaNxp-TE6taby5-7yXZ3K_fVo_0-eXhaXX3THUKWaAK0ECZCrVVlSiAK12i5iwt0erKbHXFNArNhNBFxm22RV0hEzrVKrNaI-NLcj3n7l3_ORgf5K4fXBdXSsZy4MBTiBDOkHa9985YuXfNh3IHiSCnLuXcpYxdyqlLOQWz2fGR7Wrj_oL_k65myapeqto1Xm5eGSAHFJBnjPNvce6CGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>226030340</pqid></control><display><type>article</type><title>Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves</title><source>Springer Nature - Complete Springer Journals</source><creator>Devadas, R ; Lamb, D. W ; Simpfendorfer, S ; Backhouse, D</creator><creatorcontrib>Devadas, R ; Lamb, D. W ; Simpfendorfer, S ; Backhouse, D</creatorcontrib><description>Ten, widely-used vegetation indices (VIs), based on mathematical combinations of narrow-band optical reflectance measurements in the visible/near infrared wavelength range were evaluated for their ability to discriminate leaves of 1 month old wheat plants infected with yellow (stripe), leaf and stem rust. Narrow band indices representing changes in non-chlorophyll pigment concentration and the ratio of non-chlorophyll to chlorophyll pigments proved more reliable in discriminating rust infected leaves from healthy plant tissue. Yellow rust produced the strongest response in all the calculated indices when compared to healthy leaves. No single index was capable of discriminating all three rust species from each other. However the sequential application of the Anthocyanin Reflectance Index to separate healthy, yellow and mixed stem rust/leaf rust classes followed by the Transformed Chlorophyll Absorption and Reflectance Index to separate leaf and stem rust classes would provide for the required species discrimination under laboratory conditions and thus could form the basis of rust species discrimination in wheat under field conditions.</description><identifier>ISSN: 1385-2256</identifier><identifier>EISSN: 1573-1618</identifier><identifier>DOI: 10.1007/s11119-008-9100-2</identifier><language>eng</language><publisher>Boston: Boston : Springer US</publisher><subject>Agriculture ; Atmospheric Sciences ; Biomedical and Life Sciences ; Chemistry and Earth Sciences ; Chlorophyll ; Computer Science ; Crop diseases ; Cultivars ; Discriminant analysis ; Flowers &amp; plants ; Fungi ; Fungicides ; Infections ; Leaves ; Life Sciences ; Pathogens ; Pesticides ; Physics ; Pigments ; Plant diseases ; Plant tissues ; Plants ; Reflectance ; Remote sensing ; Remote Sensing/Photogrammetry ; Sensors ; Soil Science &amp; Conservation ; Statistics for Engineering ; Studies ; Vegetation ; Vegetation mapping ; Wheat</subject><ispartof>Precision agriculture, 2009-12, Vol.10 (6), p.459-470</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>Springer Science+Business Media, LLC 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-a01e0947abad7803ac91c32491fcdebcd2c17c277c853f5b1cd127c4ca5fcc123</citedby><cites>FETCH-LOGICAL-c405t-a01e0947abad7803ac91c32491fcdebcd2c17c277c853f5b1cd127c4ca5fcc123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11119-008-9100-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11119-008-9100-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Devadas, R</creatorcontrib><creatorcontrib>Lamb, D. W</creatorcontrib><creatorcontrib>Simpfendorfer, S</creatorcontrib><creatorcontrib>Backhouse, D</creatorcontrib><title>Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves</title><title>Precision agriculture</title><addtitle>Precision Agric</addtitle><description>Ten, widely-used vegetation indices (VIs), based on mathematical combinations of narrow-band optical reflectance measurements in the visible/near infrared wavelength range were evaluated for their ability to discriminate leaves of 1 month old wheat plants infected with yellow (stripe), leaf and stem rust. Narrow band indices representing changes in non-chlorophyll pigment concentration and the ratio of non-chlorophyll to chlorophyll pigments proved more reliable in discriminating rust infected leaves from healthy plant tissue. Yellow rust produced the strongest response in all the calculated indices when compared to healthy leaves. No single index was capable of discriminating all three rust species from each other. However the sequential application of the Anthocyanin Reflectance Index to separate healthy, yellow and mixed stem rust/leaf rust classes followed by the Transformed Chlorophyll Absorption and Reflectance Index to separate leaf and stem rust classes would provide for the required species discrimination under laboratory conditions and thus could form the basis of rust species discrimination in wheat under field conditions.</description><subject>Agriculture</subject><subject>Atmospheric Sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Chemistry and Earth Sciences</subject><subject>Chlorophyll</subject><subject>Computer Science</subject><subject>Crop diseases</subject><subject>Cultivars</subject><subject>Discriminant analysis</subject><subject>Flowers &amp; plants</subject><subject>Fungi</subject><subject>Fungicides</subject><subject>Infections</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Pathogens</subject><subject>Pesticides</subject><subject>Physics</subject><subject>Pigments</subject><subject>Plant diseases</subject><subject>Plant tissues</subject><subject>Plants</subject><subject>Reflectance</subject><subject>Remote sensing</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Sensors</subject><subject>Soil Science &amp; Conservation</subject><subject>Statistics for Engineering</subject><subject>Studies</subject><subject>Vegetation</subject><subject>Vegetation mapping</subject><subject>Wheat</subject><issn>1385-2256</issn><issn>1573-1618</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1KxDAURoMoOI4-gCuL--i9Sdu0SxnGHxBc6KxDJk1qh9qOSVqZtze1gjuzSbg557vwEXKJcIMA4tZjPCUFKGgZB5QdkQVmglPMsTiOb15klLEsPyVn3u8AIpSyBanWo2oHFZquToLpEr83OjjVJqOpTYjzvkuarmq08YntXdJUpguNPUy8G3yInzYaM_ZDjk01RP_r3aiQtEaNxp-TE6taby5-7yXZ3K_fVo_0-eXhaXX3THUKWaAK0ECZCrVVlSiAK12i5iwt0erKbHXFNArNhNBFxm22RV0hEzrVKrNaI-NLcj3n7l3_ORgf5K4fXBdXSsZy4MBTiBDOkHa9985YuXfNh3IHiSCnLuXcpYxdyqlLOQWz2fGR7Wrj_oL_k65myapeqto1Xm5eGSAHFJBnjPNvce6CGw</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Devadas, R</creator><creator>Lamb, D. W</creator><creator>Simpfendorfer, S</creator><creator>Backhouse, D</creator><general>Boston : Springer US</general><general>Springer US</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M0K</scope><scope>M2P</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20091201</creationdate><title>Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves</title><author>Devadas, R ; Lamb, D. W ; Simpfendorfer, S ; Backhouse, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-a01e0947abad7803ac91c32491fcdebcd2c17c277c853f5b1cd127c4ca5fcc123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Agriculture</topic><topic>Atmospheric Sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Chemistry and Earth Sciences</topic><topic>Chlorophyll</topic><topic>Computer Science</topic><topic>Crop diseases</topic><topic>Cultivars</topic><topic>Discriminant analysis</topic><topic>Flowers &amp; plants</topic><topic>Fungi</topic><topic>Fungicides</topic><topic>Infections</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Pathogens</topic><topic>Pesticides</topic><topic>Physics</topic><topic>Pigments</topic><topic>Plant diseases</topic><topic>Plant tissues</topic><topic>Plants</topic><topic>Reflectance</topic><topic>Remote sensing</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Sensors</topic><topic>Soil Science &amp; Conservation</topic><topic>Statistics for Engineering</topic><topic>Studies</topic><topic>Vegetation</topic><topic>Vegetation mapping</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devadas, R</creatorcontrib><creatorcontrib>Lamb, D. W</creatorcontrib><creatorcontrib>Simpfendorfer, S</creatorcontrib><creatorcontrib>Backhouse, D</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Precision agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devadas, R</au><au>Lamb, D. W</au><au>Simpfendorfer, S</au><au>Backhouse, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves</atitle><jtitle>Precision agriculture</jtitle><stitle>Precision Agric</stitle><date>2009-12-01</date><risdate>2009</risdate><volume>10</volume><issue>6</issue><spage>459</spage><epage>470</epage><pages>459-470</pages><issn>1385-2256</issn><eissn>1573-1618</eissn><abstract>Ten, widely-used vegetation indices (VIs), based on mathematical combinations of narrow-band optical reflectance measurements in the visible/near infrared wavelength range were evaluated for their ability to discriminate leaves of 1 month old wheat plants infected with yellow (stripe), leaf and stem rust. Narrow band indices representing changes in non-chlorophyll pigment concentration and the ratio of non-chlorophyll to chlorophyll pigments proved more reliable in discriminating rust infected leaves from healthy plant tissue. Yellow rust produced the strongest response in all the calculated indices when compared to healthy leaves. No single index was capable of discriminating all three rust species from each other. However the sequential application of the Anthocyanin Reflectance Index to separate healthy, yellow and mixed stem rust/leaf rust classes followed by the Transformed Chlorophyll Absorption and Reflectance Index to separate leaf and stem rust classes would provide for the required species discrimination under laboratory conditions and thus could form the basis of rust species discrimination in wheat under field conditions.</abstract><cop>Boston</cop><pub>Boston : Springer US</pub><doi>10.1007/s11119-008-9100-2</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1385-2256
ispartof Precision agriculture, 2009-12, Vol.10 (6), p.459-470
issn 1385-2256
1573-1618
language eng
recordid cdi_proquest_journals_226030340
source Springer Nature - Complete Springer Journals
subjects Agriculture
Atmospheric Sciences
Biomedical and Life Sciences
Chemistry and Earth Sciences
Chlorophyll
Computer Science
Crop diseases
Cultivars
Discriminant analysis
Flowers & plants
Fungi
Fungicides
Infections
Leaves
Life Sciences
Pathogens
Pesticides
Physics
Pigments
Plant diseases
Plant tissues
Plants
Reflectance
Remote sensing
Remote Sensing/Photogrammetry
Sensors
Soil Science & Conservation
Statistics for Engineering
Studies
Vegetation
Vegetation mapping
Wheat
title Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A30%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20ten%20spectral%20vegetation%20indices%20for%20identifying%20rust%20infection%20in%20individual%20wheat%20leaves&rft.jtitle=Precision%20agriculture&rft.au=Devadas,%20R&rft.date=2009-12-01&rft.volume=10&rft.issue=6&rft.spage=459&rft.epage=470&rft.pages=459-470&rft.issn=1385-2256&rft.eissn=1573-1618&rft_id=info:doi/10.1007/s11119-008-9100-2&rft_dat=%3Cproquest_cross%3E1900891321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=226030340&rft_id=info:pmid/&rfr_iscdi=true