Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves
Ten, widely-used vegetation indices (VIs), based on mathematical combinations of narrow-band optical reflectance measurements in the visible/near infrared wavelength range were evaluated for their ability to discriminate leaves of 1 month old wheat plants infected with yellow (stripe), leaf and stem...
Gespeichert in:
Veröffentlicht in: | Precision agriculture 2009-12, Vol.10 (6), p.459-470 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 470 |
---|---|
container_issue | 6 |
container_start_page | 459 |
container_title | Precision agriculture |
container_volume | 10 |
creator | Devadas, R Lamb, D. W Simpfendorfer, S Backhouse, D |
description | Ten, widely-used vegetation indices (VIs), based on mathematical combinations of narrow-band optical reflectance measurements in the visible/near infrared wavelength range were evaluated for their ability to discriminate leaves of 1 month old wheat plants infected with yellow (stripe), leaf and stem rust. Narrow band indices representing changes in non-chlorophyll pigment concentration and the ratio of non-chlorophyll to chlorophyll pigments proved more reliable in discriminating rust infected leaves from healthy plant tissue. Yellow rust produced the strongest response in all the calculated indices when compared to healthy leaves. No single index was capable of discriminating all three rust species from each other. However the sequential application of the Anthocyanin Reflectance Index to separate healthy, yellow and mixed stem rust/leaf rust classes followed by the Transformed Chlorophyll Absorption and Reflectance Index to separate leaf and stem rust classes would provide for the required species discrimination under laboratory conditions and thus could form the basis of rust species discrimination in wheat under field conditions. |
doi_str_mv | 10.1007/s11119-008-9100-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_226030340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1900891321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-a01e0947abad7803ac91c32491fcdebcd2c17c277c853f5b1cd127c4ca5fcc123</originalsourceid><addsrcrecordid>eNp9kM1KxDAURoMoOI4-gCuL--i9Sdu0SxnGHxBc6KxDJk1qh9qOSVqZtze1gjuzSbg557vwEXKJcIMA4tZjPCUFKGgZB5QdkQVmglPMsTiOb15klLEsPyVn3u8AIpSyBanWo2oHFZquToLpEr83OjjVJqOpTYjzvkuarmq08YntXdJUpguNPUy8G3yInzYaM_ZDjk01RP_r3aiQtEaNxp-TE6taby5-7yXZ3K_fVo_0-eXhaXX3THUKWaAK0ECZCrVVlSiAK12i5iwt0erKbHXFNArNhNBFxm22RV0hEzrVKrNaI-NLcj3n7l3_ORgf5K4fXBdXSsZy4MBTiBDOkHa9985YuXfNh3IHiSCnLuXcpYxdyqlLOQWz2fGR7Wrj_oL_k65myapeqto1Xm5eGSAHFJBnjPNvce6CGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>226030340</pqid></control><display><type>article</type><title>Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves</title><source>Springer Nature - Complete Springer Journals</source><creator>Devadas, R ; Lamb, D. W ; Simpfendorfer, S ; Backhouse, D</creator><creatorcontrib>Devadas, R ; Lamb, D. W ; Simpfendorfer, S ; Backhouse, D</creatorcontrib><description>Ten, widely-used vegetation indices (VIs), based on mathematical combinations of narrow-band optical reflectance measurements in the visible/near infrared wavelength range were evaluated for their ability to discriminate leaves of 1 month old wheat plants infected with yellow (stripe), leaf and stem rust. Narrow band indices representing changes in non-chlorophyll pigment concentration and the ratio of non-chlorophyll to chlorophyll pigments proved more reliable in discriminating rust infected leaves from healthy plant tissue. Yellow rust produced the strongest response in all the calculated indices when compared to healthy leaves. No single index was capable of discriminating all three rust species from each other. However the sequential application of the Anthocyanin Reflectance Index to separate healthy, yellow and mixed stem rust/leaf rust classes followed by the Transformed Chlorophyll Absorption and Reflectance Index to separate leaf and stem rust classes would provide for the required species discrimination under laboratory conditions and thus could form the basis of rust species discrimination in wheat under field conditions.</description><identifier>ISSN: 1385-2256</identifier><identifier>EISSN: 1573-1618</identifier><identifier>DOI: 10.1007/s11119-008-9100-2</identifier><language>eng</language><publisher>Boston: Boston : Springer US</publisher><subject>Agriculture ; Atmospheric Sciences ; Biomedical and Life Sciences ; Chemistry and Earth Sciences ; Chlorophyll ; Computer Science ; Crop diseases ; Cultivars ; Discriminant analysis ; Flowers & plants ; Fungi ; Fungicides ; Infections ; Leaves ; Life Sciences ; Pathogens ; Pesticides ; Physics ; Pigments ; Plant diseases ; Plant tissues ; Plants ; Reflectance ; Remote sensing ; Remote Sensing/Photogrammetry ; Sensors ; Soil Science & Conservation ; Statistics for Engineering ; Studies ; Vegetation ; Vegetation mapping ; Wheat</subject><ispartof>Precision agriculture, 2009-12, Vol.10 (6), p.459-470</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>Springer Science+Business Media, LLC 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-a01e0947abad7803ac91c32491fcdebcd2c17c277c853f5b1cd127c4ca5fcc123</citedby><cites>FETCH-LOGICAL-c405t-a01e0947abad7803ac91c32491fcdebcd2c17c277c853f5b1cd127c4ca5fcc123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11119-008-9100-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11119-008-9100-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Devadas, R</creatorcontrib><creatorcontrib>Lamb, D. W</creatorcontrib><creatorcontrib>Simpfendorfer, S</creatorcontrib><creatorcontrib>Backhouse, D</creatorcontrib><title>Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves</title><title>Precision agriculture</title><addtitle>Precision Agric</addtitle><description>Ten, widely-used vegetation indices (VIs), based on mathematical combinations of narrow-band optical reflectance measurements in the visible/near infrared wavelength range were evaluated for their ability to discriminate leaves of 1 month old wheat plants infected with yellow (stripe), leaf and stem rust. Narrow band indices representing changes in non-chlorophyll pigment concentration and the ratio of non-chlorophyll to chlorophyll pigments proved more reliable in discriminating rust infected leaves from healthy plant tissue. Yellow rust produced the strongest response in all the calculated indices when compared to healthy leaves. No single index was capable of discriminating all three rust species from each other. However the sequential application of the Anthocyanin Reflectance Index to separate healthy, yellow and mixed stem rust/leaf rust classes followed by the Transformed Chlorophyll Absorption and Reflectance Index to separate leaf and stem rust classes would provide for the required species discrimination under laboratory conditions and thus could form the basis of rust species discrimination in wheat under field conditions.</description><subject>Agriculture</subject><subject>Atmospheric Sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Chemistry and Earth Sciences</subject><subject>Chlorophyll</subject><subject>Computer Science</subject><subject>Crop diseases</subject><subject>Cultivars</subject><subject>Discriminant analysis</subject><subject>Flowers & plants</subject><subject>Fungi</subject><subject>Fungicides</subject><subject>Infections</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Pathogens</subject><subject>Pesticides</subject><subject>Physics</subject><subject>Pigments</subject><subject>Plant diseases</subject><subject>Plant tissues</subject><subject>Plants</subject><subject>Reflectance</subject><subject>Remote sensing</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Sensors</subject><subject>Soil Science & Conservation</subject><subject>Statistics for Engineering</subject><subject>Studies</subject><subject>Vegetation</subject><subject>Vegetation mapping</subject><subject>Wheat</subject><issn>1385-2256</issn><issn>1573-1618</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1KxDAURoMoOI4-gCuL--i9Sdu0SxnGHxBc6KxDJk1qh9qOSVqZtze1gjuzSbg557vwEXKJcIMA4tZjPCUFKGgZB5QdkQVmglPMsTiOb15klLEsPyVn3u8AIpSyBanWo2oHFZquToLpEr83OjjVJqOpTYjzvkuarmq08YntXdJUpguNPUy8G3yInzYaM_ZDjk01RP_r3aiQtEaNxp-TE6taby5-7yXZ3K_fVo_0-eXhaXX3THUKWaAK0ECZCrVVlSiAK12i5iwt0erKbHXFNArNhNBFxm22RV0hEzrVKrNaI-NLcj3n7l3_ORgf5K4fXBdXSsZy4MBTiBDOkHa9985YuXfNh3IHiSCnLuXcpYxdyqlLOQWz2fGR7Wrj_oL_k65myapeqto1Xm5eGSAHFJBnjPNvce6CGw</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Devadas, R</creator><creator>Lamb, D. W</creator><creator>Simpfendorfer, S</creator><creator>Backhouse, D</creator><general>Boston : Springer US</general><general>Springer US</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M0K</scope><scope>M2P</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20091201</creationdate><title>Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves</title><author>Devadas, R ; Lamb, D. W ; Simpfendorfer, S ; Backhouse, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-a01e0947abad7803ac91c32491fcdebcd2c17c277c853f5b1cd127c4ca5fcc123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Agriculture</topic><topic>Atmospheric Sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Chemistry and Earth Sciences</topic><topic>Chlorophyll</topic><topic>Computer Science</topic><topic>Crop diseases</topic><topic>Cultivars</topic><topic>Discriminant analysis</topic><topic>Flowers & plants</topic><topic>Fungi</topic><topic>Fungicides</topic><topic>Infections</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Pathogens</topic><topic>Pesticides</topic><topic>Physics</topic><topic>Pigments</topic><topic>Plant diseases</topic><topic>Plant tissues</topic><topic>Plants</topic><topic>Reflectance</topic><topic>Remote sensing</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Sensors</topic><topic>Soil Science & Conservation</topic><topic>Statistics for Engineering</topic><topic>Studies</topic><topic>Vegetation</topic><topic>Vegetation mapping</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devadas, R</creatorcontrib><creatorcontrib>Lamb, D. W</creatorcontrib><creatorcontrib>Simpfendorfer, S</creatorcontrib><creatorcontrib>Backhouse, D</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Precision agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devadas, R</au><au>Lamb, D. W</au><au>Simpfendorfer, S</au><au>Backhouse, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves</atitle><jtitle>Precision agriculture</jtitle><stitle>Precision Agric</stitle><date>2009-12-01</date><risdate>2009</risdate><volume>10</volume><issue>6</issue><spage>459</spage><epage>470</epage><pages>459-470</pages><issn>1385-2256</issn><eissn>1573-1618</eissn><abstract>Ten, widely-used vegetation indices (VIs), based on mathematical combinations of narrow-band optical reflectance measurements in the visible/near infrared wavelength range were evaluated for their ability to discriminate leaves of 1 month old wheat plants infected with yellow (stripe), leaf and stem rust. Narrow band indices representing changes in non-chlorophyll pigment concentration and the ratio of non-chlorophyll to chlorophyll pigments proved more reliable in discriminating rust infected leaves from healthy plant tissue. Yellow rust produced the strongest response in all the calculated indices when compared to healthy leaves. No single index was capable of discriminating all three rust species from each other. However the sequential application of the Anthocyanin Reflectance Index to separate healthy, yellow and mixed stem rust/leaf rust classes followed by the Transformed Chlorophyll Absorption and Reflectance Index to separate leaf and stem rust classes would provide for the required species discrimination under laboratory conditions and thus could form the basis of rust species discrimination in wheat under field conditions.</abstract><cop>Boston</cop><pub>Boston : Springer US</pub><doi>10.1007/s11119-008-9100-2</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-2256 |
ispartof | Precision agriculture, 2009-12, Vol.10 (6), p.459-470 |
issn | 1385-2256 1573-1618 |
language | eng |
recordid | cdi_proquest_journals_226030340 |
source | Springer Nature - Complete Springer Journals |
subjects | Agriculture Atmospheric Sciences Biomedical and Life Sciences Chemistry and Earth Sciences Chlorophyll Computer Science Crop diseases Cultivars Discriminant analysis Flowers & plants Fungi Fungicides Infections Leaves Life Sciences Pathogens Pesticides Physics Pigments Plant diseases Plant tissues Plants Reflectance Remote sensing Remote Sensing/Photogrammetry Sensors Soil Science & Conservation Statistics for Engineering Studies Vegetation Vegetation mapping Wheat |
title | Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A30%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20ten%20spectral%20vegetation%20indices%20for%20identifying%20rust%20infection%20in%20individual%20wheat%20leaves&rft.jtitle=Precision%20agriculture&rft.au=Devadas,%20R&rft.date=2009-12-01&rft.volume=10&rft.issue=6&rft.spage=459&rft.epage=470&rft.pages=459-470&rft.issn=1385-2256&rft.eissn=1573-1618&rft_id=info:doi/10.1007/s11119-008-9100-2&rft_dat=%3Cproquest_cross%3E1900891321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=226030340&rft_id=info:pmid/&rfr_iscdi=true |