Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves

Ten, widely-used vegetation indices (VIs), based on mathematical combinations of narrow-band optical reflectance measurements in the visible/near infrared wavelength range were evaluated for their ability to discriminate leaves of 1 month old wheat plants infected with yellow (stripe), leaf and stem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Precision agriculture 2009-12, Vol.10 (6), p.459-470
Hauptverfasser: Devadas, R, Lamb, D. W, Simpfendorfer, S, Backhouse, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ten, widely-used vegetation indices (VIs), based on mathematical combinations of narrow-band optical reflectance measurements in the visible/near infrared wavelength range were evaluated for their ability to discriminate leaves of 1 month old wheat plants infected with yellow (stripe), leaf and stem rust. Narrow band indices representing changes in non-chlorophyll pigment concentration and the ratio of non-chlorophyll to chlorophyll pigments proved more reliable in discriminating rust infected leaves from healthy plant tissue. Yellow rust produced the strongest response in all the calculated indices when compared to healthy leaves. No single index was capable of discriminating all three rust species from each other. However the sequential application of the Anthocyanin Reflectance Index to separate healthy, yellow and mixed stem rust/leaf rust classes followed by the Transformed Chlorophyll Absorption and Reflectance Index to separate leaf and stem rust classes would provide for the required species discrimination under laboratory conditions and thus could form the basis of rust species discrimination in wheat under field conditions.
ISSN:1385-2256
1573-1618
DOI:10.1007/s11119-008-9100-2