Synchrotron-radiated X-ray and neutron diffraction study of native cellulose
Precise determination of d-spacings and compositional ratio of cellulose Iα and Iβ in various native cellulose samples was successfully carried out by synchrotron-radiated X-ray diffraction and time-of-flight (TOF) neutron diffraction from quasi-powder specimens. X-ray diffraction peaks were separat...
Gespeichert in:
Veröffentlicht in: | Cellulose (London) 1997-09, Vol.4 (3), p.221-232 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Precise determination of d-spacings and compositional ratio of cellulose Iα and Iβ in various native cellulose samples was successfully carried out by synchrotron-radiated X-ray diffraction and time-of-flight (TOF) neutron diffraction from quasi-powder specimens. X-ray diffraction peaks were separated by the deconvolution method using six types of profile function: Gaussian, Lorentzian, intermediate Lorentzian, modified Lorentzian, pseudo-Voigt, and Pearson VII. In terms of R-factors, the pseudo-Voigt function gave the best fit with the observation, and was used for determination of d-spacings. The numerical results for Valonia cellulose were: dIα (1 0 0) = 0.613 nm; dIβ (1 1 0) = 0.603 nm; dIβ (1 1 0) = 0.535 nm; dIα (0 1 0) = 0.529 nm; Iα content = 0.65. The differences determined between dIα (1 0 0) and dIβ (1 1 0) and between dIβ (1 1 0) and dIα (0 1 0) were similar to those previously reported. Comparison between unresolved peaks for the two types of cellulose samples revealed a small but definite difference between dIα (1 1 0) and dIβ (2 0 0). The TOF neutron diffractometry using deuterated samples confirmed this difference. |
---|---|
ISSN: | 0969-0239 1572-882X |
DOI: | 10.1023/A:1018435806488 |