Accurate Dopant and Interface Characterization in Oxidized SiC with Refined Non-Contact C-V Technique
The non-contact C-V technique has been recently gaining interest as a precise, cost and time effective metrology for wide-bandgap semiconductors. Originally focused on dopant measurement, non-contact C-V has been expanding to encompass wide-bandgap surface and interface characterization, including c...
Gespeichert in:
Veröffentlicht in: | Materials science forum 2019-07, Vol.963, p.189-193 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The non-contact C-V technique has been recently gaining interest as a precise, cost and time effective metrology for wide-bandgap semiconductors. Originally focused on dopant measurement, non-contact C-V has been expanding to encompass wide-bandgap surface and interface characterization, including complex reliability issues critical for the future of power devices. In this work, we report progress achieved using a new direct method for determining the flatband voltage, VFB, and capacitance, CFB. Experimental results are presented for n-type oxidized epitaxial 4-H SiC. They demonstrate the approach and the unique self-consistent measurement producing an entire set of pertinent electrical parameters, including the interface trap density, Dit. |
---|---|
ISSN: | 0255-5476 1662-9752 1662-9752 |
DOI: | 10.4028/www.scientific.net/MSF.963.189 |