Solubility and Solution Structure of Cellulose Derivatives

Strongly interacting solvents are needed to dissolve cellulose; therefore, in the past the interpretation of the uncommon solution behavior of cellulose and its derivatives was based mainly on energetic (enthalpic) considerations, for example, hydrogen bonding. These attempts have not been very succ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellulose (London) 2003-09, Vol.10 (3), p.213-225
1. Verfasser: Burchard, Walther
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Strongly interacting solvents are needed to dissolve cellulose; therefore, in the past the interpretation of the uncommon solution behavior of cellulose and its derivatives was based mainly on energetic (enthalpic) considerations, for example, hydrogen bonding. These attempts have not been very successful. The present paper demonstrates that entropic effects influence the solution behavior much stronger than hitherto supposed. In the well-known Flory–Huggins theory the driving force for dissolution of flexible chains is the configurational entropy of mixing. This large entropy is strongly reduced by the chain stiffness of the cellulose backbone and by the strictly regular primary structure of this polysaccharide. It strongly reduces the driving force for dissolution. The entropy of mixing becomes largely increased again by the attachment of long side chains and causes solubility with surprising efficiency (hairy rod principle). This effect is demonstrated with several examples. Among others, the surprising insolubility of short, regular-selectively substituted cellulose chains is explained, although long chains of the same substitution pattern are soluble. The striking behavior of cellulose ethers in water is based on the hydrophobic effect, which causes an increased order of the polymer surrounding water molecules. The induced order results in a very pronounced decrease of entropy of mixing that overcompensates the positive configurational entropy of mixing. Common rules of basic thermodynamics now predict phase separation on heating, contrary to the Flory–Huggins theory, which can only predict phase separation on cooling.
ISSN:0969-0239
1572-882X
DOI:10.1023/A:1025160620576