Analysis of the effects of catalytic bleaching on cotton

Hydrogen peroxide can be catalyzed to bleach cotton fibers at temperatures as low as 30°C by incorporating dinuclear tri-μ-oxo bridged manganese(IV) complex of the ligand 1,4,7-trimethyl-1,4,7-triazacyclononane (MnTACN) as the catalyst in the bleaching solution. The catalytic system was found to be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellulose (London) 2007-08, Vol.14 (4), p.385-400
Hauptverfasser: Topalovic, Tatjana, Nierstrasz, Vincent A, Bautista, Lorenzo, Jocic, Dragan, Navarro, Antonio, Warmoeskerken, Marijn M. C. G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydrogen peroxide can be catalyzed to bleach cotton fibers at temperatures as low as 30°C by incorporating dinuclear tri-μ-oxo bridged manganese(IV) complex of the ligand 1,4,7-trimethyl-1,4,7-triazacyclononane (MnTACN) as the catalyst in the bleaching solution. The catalytic system was found to be more selective under the conditions applied than the non-catalytic H₂O₂ system, showing better bleaching performance while causing slightly lower decrease in degree of polymerization (DP) of cellulose. In order to gain fundamental knowledge of the bleach effect on cotton fibers and cellulose as its main component, especially after catalytic bleaching, X-ray Photoelectron Spectroscopy (XPS) was used to study surface chemical effects. The Washburn method was applied to investigate wetting properties, and liquid porosity was used to obtain pore volume distribution (PVD) plots. Parallel analyzes performed on model cotton fabric, i.e. “clean” cotton fabric stained with morin - a pigment regularly found in native cotton fiber, helped to differentiate between pigment oxidation and other bleaching effects produced on the (regular) industrially scoured cotton fabric. Bleaching was not limited to the chemical action but also affected cotton fiber capillary parameters most likely due to the removal of non-cellulosic materials as well as chain-shortened cellulose.
ISSN:0969-0239
1572-882X
DOI:10.1007/s10570-007-9120-5