Periodic Points for Sphere Maps Preserving Monopole Foliations

Let S 2 be a two-dimensional sphere. We consider two types of its foliations with one singularity and maps f : S 2 → S 2 preserving these foliations, more and less regular. We prove that in both cases f has at least | deg ( f ) | fixed points, where deg ( f ) is a topological degree of f . In partic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Qualitative theory of dynamical systems 2019-08, Vol.18 (2), p.533-546
Hauptverfasser: Graff, Grzegorz, Misiurewicz, Michał, Nowak-Przygodzki, Piotr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let S 2 be a two-dimensional sphere. We consider two types of its foliations with one singularity and maps f : S 2 → S 2 preserving these foliations, more and less regular. We prove that in both cases f has at least | deg ( f ) | fixed points, where deg ( f ) is a topological degree of f . In particular, the lower growth rate of the number of fixed points of the iterations of f is at least log | deg ( f ) | . This confirms the Shub’s conjecture in these classes of maps.
ISSN:1575-5460
1662-3592
DOI:10.1007/s12346-018-0298-8