Effect of preparation process of microfibrillated cellulose-reinforced polypropylene upon dispersion and mechanical properties

Microfibrillated cellulose (MFC)-reinforced polypropylene (PP) was prepared via two engineering approaches: disintegration of the pulp by a bead mill followed by a melt-compounding process with PP (B-MFC-reinforced PP); and disintegration of the pulp mixed with PP by a twin screw extruder followed b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellulose (London) 2017-09, Vol.24 (9), p.3789-3801
Hauptverfasser: Suzuki, Katsuhito, Homma, Yoko, Igarashi, Yuko, Okumura, Hiroaki, Yano, Hiroyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microfibrillated cellulose (MFC)-reinforced polypropylene (PP) was prepared via two engineering approaches: disintegration of the pulp by a bead mill followed by a melt-compounding process with PP (B-MFC-reinforced PP); and disintegration of the pulp mixed with PP by a twin screw extruder followed by a melt-compounding process (T-MFC-reinforced PP). The effects that the engineering process and the microfibrillation of the pulp had upon the dispersion and mechanical properties were investigated through tensile tests, rheological analysis and X-ray computed tomography. The bead-milling method enabled a uniform microfibrillation of the pulp to under 100 nm, which corresponded to a surface area of 133–146 m 2 /g for the pulp, found by the Brunauer–Emmett–Teller (BET) analysis. The T-MFC-reinforced PP with 30 wt% MFC content exhibited a tensile modulus of 5.3 GPa and a strength of 85 MPa, whereas the B-MFC-reinforced PP composites with the same content of MFC exhibited values of 4.1 GPa and 59.6 MPa, respectively. Rheological analysis revealed that the complex viscosity and storage modulus at 170 °C of T-MFC-reinforced PP with 30 wt% MFC content are 5–7 and 5–8 times higher than that of B-MFC-reinforced PP, respectively. This indicated that T-MFC was more dispersed in the PP than B-MFC. Therefore, T-MFC produced a more rigid interconnected network in the matrix during the melting state than B-MFC.
ISSN:0969-0239
1572-882X
DOI:10.1007/s10570-017-1355-1