Sustainable stabilization of oil in water emulsions by cellulose nanocrystals synthesized from deep eutectic solvents

There is an urgent global need to develop novel types of environmentally safe dispersing chemicals from renewable resources in order to reduce the environmental impact of oil spills. For this goal, cellulose, the most abundant natural polymeric source, is a promising green, nontoxic alternative that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellulose (London) 2017-04, Vol.24 (4), p.1679-1689
Hauptverfasser: Laitinen, Ossi, Ojala, Jonna, Sirviö, Juho Antti, Liimatainen, Henrikki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is an urgent global need to develop novel types of environmentally safe dispersing chemicals from renewable resources in order to reduce the environmental impact of oil spills. For this goal, cellulose, the most abundant natural polymeric source, is a promising green, nontoxic alternative that could replace the current synthetic surfactants. In this study, cellulose nanocrystals (CNC) synthesized using a deep eutectic solvent (DES) and two commercially available cellulose nanocrystals were used as marine diesel oil–water Pickering emulsion stabilizers. In particular, oil in water (o/w) emulsion formation and stability of emulsified oil during storing were addressed using a laser diffraction particle size analyzer, image analysis, and oil emulsion volume examination. The particle size of the o/w reference without CNCs after dispersing was over 50 µm and coalescence occurred only a few minutes after the emulsifying mixing procedure. All three investigated CNCs were effective stabilizers for the o/w system (oil droplets size under 10 µm) by preventing the oil droplet coalescence over time (6 weeks) and resulting in a stable creaming layer. The CNCs prepared using green DES systems boasted performance comparable to that of commercial CNCs, and they showed effectiveness at 0.1% dispersant dosage.
ISSN:0969-0239
1572-882X
DOI:10.1007/s10570-017-1226-9