The Main Factor Controlling the Coal and Gas Outbursts in the Eastern Pingdingshan Mining Area

By analyzing the gas occurrence, it is found that ground stress plays a leading role in coal and gas outburst in eastern coal mines of Nos. 8, 10 and 12 in Pingdingshan Mining Area where show the most serious outburst hazards. According to the isograms of coal seam depth in F Group, the relationship...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geotechnical and geological engineering 2016-12, Vol.34 (6), p.1825-1834
Hauptverfasser: Wang, Wei, Wang, Xiaochao, Yan, Jiangwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By analyzing the gas occurrence, it is found that ground stress plays a leading role in coal and gas outburst in eastern coal mines of Nos. 8, 10 and 12 in Pingdingshan Mining Area where show the most serious outburst hazards. According to the isograms of coal seam depth in F Group, the relationship between the distributions of the fold tectonic stress and the coal and gas outburst was simulated using the ANSYS program. The result shows that the stress concentrates near to the fault and the outcrop of the fault enhances the possibility of gas outburst. The shear stress in the north of the anticline is greater than that in the south. The shear stress direction on the north wing of the anticline is dextral and the coal seam in this area exhibits highest possibility for gas outburst. However, on the surrounding rock, the shear stress direction on the north wing of the anticline is sinistral. The regions with fold tectonic stress ranging from 1.44 to 4.47 MPa correspond to the sites with high risk of gas outburst. Ground stress is the main factor controlling the coal and gas outburst in the three mines. Currently, the distribution of coal and gas outburst in the three mines is in agreement with that of coal shear stress.
ISSN:0960-3182
1573-1529
DOI:10.1007/s10706-016-9991-z