Environmental Performance of Lime–Rice Husk Ash Stabilized Lateritic Soil Contaminated with Lead or Naphthalene

This study evaluates the environmental performance of a lime–rice husk ash stabilized lateritic soil that had been contaminated with either lead or naphthalene. The Lime and Rice husk ash mixed in a ratio of 1:2 was used as a stabilizing binder and added to the contaminated soil at diverse quantitie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geotechnical and geological engineering 2017-12, Vol.35 (6), p.2947-2964
Hauptverfasser: Oluwatuyi, Opeyemi E., Ojuri, Oluwapelumi O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study evaluates the environmental performance of a lime–rice husk ash stabilized lateritic soil that had been contaminated with either lead or naphthalene. The Lime and Rice husk ash mixed in a ratio of 1:2 was used as a stabilizing binder and added to the contaminated soil at diverse quantities of 5 and 10% by weight of the contaminated samples. Environmental performance of the soil-contaminant-binder mixes were evaluated from the leaching and batch equilibrium adsorption tests conducted on the samples. Mineralogical analysis was also carried out on the leached samples using the X-ray diffractometer to determine the predominant minerals. The leaching test revealed that the lead concentration in the leachate was reduced below the allowable standard limit of 5 mg/l for lead, even after a duration of disturbed shaking at pH 3 ± 0.5 as the binder addition was increased from 0 to 5 to 10%. The binder addition was not effective to reduce the leachate concentrations of the naphthalene contaminant below the allowable standard limit for naphthalene in soil which is 0.2 µg/l. The batch equilibrium adsorption test showed that lateritic soil had a good adsorption capacity for both contaminants, which increased with an increase in the binder addition.
ISSN:0960-3182
1573-1529
DOI:10.1007/s10706-017-0294-9