Micromechanical Modeling of Yield in Isotropic Non-Cohesive Particulate Materials

We perform a micromechanical analysis of general isotropic non-cohesive particulate materials idealized as three-dimensional random assemblies of uniform spheres with a simple linear elastic inter-particle contact force law and inter-particle Coulomb friction law. We obtain analytical relationships...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geotechnical and geological engineering 2016-04, Vol.34 (2), p.551-566
Hauptverfasser: Fleischmann, J. A., Drugan, W. J., Plesha, M. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We perform a micromechanical analysis of general isotropic non-cohesive particulate materials idealized as three-dimensional random assemblies of uniform spheres with a simple linear elastic inter-particle contact force law and inter-particle Coulomb friction law. We obtain analytical relationships between the inter-particle friction coefficient μ (or inter-particle friction angle ϕ μ = tan - 1 μ ) on the microscale and the material friction angle ϕ on the macroscale. Our micromechanical analysis directly employs force and moment equilibrium (together with compatibility and the contact constitutive assumptions noted) rather than energy methods, and thus can account for the effects of particle rotation, and in particular the effects of mechanisms or zero-energy modes due to particle rotation. To explore the effects of particle rotation, we perform analyses with particle rotation either allowed or prohibited. To validate the analytical results obtained here, we compare the ϕ versus ϕ μ curves determined theoretically to those obtained by the discrete element method (DEM) for six randomly packed specimens of 3430–29, 660 uniform spherical elements with uniform inter-element Coulomb friction in Fleischmann et al. in Geotech Geol Eng 32(4):1081–1100, ( 2014 ). The ϕ versus ϕ μ curves derived here show remarkable agreement with those obtained via DEM simulations in Fleischmann et al. in Geotech Geol Eng 32(4):1081–1100, ( 2014 ), especially for the case in which particle rotation is not artificially restrained.
ISSN:0960-3182
1573-1529
DOI:10.1007/s10706-015-9965-6