Landraces of cowpea, Vigna unguiculata (L.) Walp., as potential sources of genes for unique characters in breeding

Cowpea landraces belonging to Vigna unguiculata (L.) Walp. subsp. unguiculata cv.-gr. unguiculata and cv.-gr. sesquipedalis collected from part of the Deccan Plateau and West Coast of India were evaluated to (i) identify the diverse source(s) of variation for improved characters like pods/peduncle a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetic resources and crop evolution 2009-08, Vol.56 (5), p.615-627
Hauptverfasser: Hegde, V. S, Mishra, S. K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cowpea landraces belonging to Vigna unguiculata (L.) Walp. subsp. unguiculata cv.-gr. unguiculata and cv.-gr. sesquipedalis collected from part of the Deccan Plateau and West Coast of India were evaluated to (i) identify the diverse source(s) of variation for improved characters like pods/peduncle and seed index (ii) study the response of landraces for adaptation to drought and heat stress and (iii) understand the breeding value of a landrace in the genetic improvement of a popular cowpea cultivar. Landraces were evaluated for various morphological characters, pods/peduncle, seed index and other economically important agronomic traits, rust resistance and drought and heat tolerance in different years and environments. Landraces were found as an important source of genetic variability for pods/plant, pods/peduncle, better pod filling ability (seed index), grain yield/plant as well as drought and heat tolerance and rust resistance. Hybridization between C 152 (cv.) and DWDCC 016 (landrace) resulted in release of new variation not present in the two parents. Thus the landrace, DWDCC 016, can be utilized to improve cultivated varieties by transferring to them the economically valuable traits like pods/peduncle and seed index thereby enhancing realisation of sink potential and ultimately grain yield in a sustainable way.
ISSN:0925-9864
1573-5109
DOI:10.1007/s10722-008-9389-8