Successional and seasonal variation in litterfall and associated nutrient transfer in semi-evergreen tropical forests of SE Mexico

Forest conversion to agriculture and grassland has been widespread in south-eastern Mexico. The productivity, functioning and carbon dynamics of secondary forests growing after abandonment of agricultural fields are expected to differ from those of primary forests. This study analysed whether forest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nutrient cycling in agroecosystems 2015-09, Vol.103 (1), p.45-60
Hauptverfasser: Aryal, Deb Raj, De Jong, Bernardus H. J, Ochoa-Gaona, Susana, Mendoza-Vega, Jorge, Esparza-Olguin, Ligia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Forest conversion to agriculture and grassland has been widespread in south-eastern Mexico. The productivity, functioning and carbon dynamics of secondary forests growing after abandonment of agricultural fields are expected to differ from those of primary forests. This study analysed whether forest age and seasonal variations affect the amount and temporal distribution of litterfall and associated nutrient transfer. Litterfall was measured across a chronosequence of semi-evergreen tropical forest in Calakmul, Yucatan peninsula, Mexico, and an index was created to evaluate the effect of land use intensity on litterfall collected in 16 stands from October 2012 to September 2014. Total litterfall ranged from 5.2 ± 0.6 to 7.1 ± 0.3 Mg ha⁻¹ year⁻¹ and peaked in secondary forest aged 10–20 years. Leaves contributed 84–91 % of total litterfall. The associated transfer of carbon ranged from 2.3 ± 0.3 to 3.2 ± 0.1 Mg ha⁻¹ year⁻¹ and of nitrogen from 62 ± 7 to 84 ± 4 kg ha⁻¹ year⁻¹. Carbon and nutrient accumulation in the organic horizon (Oa) increased significantly with forest age. However, carbon in mineral soil (down to 0.30 m depth) did not increase over time. Peaks in monthly litterfall coincided with the dry season, with higher peaks in a year with lower rainfall in the dry season. Peaks were also higher in secondary forests than in primary forests, due to changes in species composition. Higher land use intensity reduced carbon and nutrient transfer through litter in regenerating secondary forests. Longer-term research is required to analyse the climate sensitivity of litter dynamics in these tropical forest frontiers.
ISSN:1385-1314
1573-0867
DOI:10.1007/s10705-015-9719-0