Effect of acid and hydrothermal treatments on the dye adsorption properties of biomass-derived activated carbon

Different types of acid pretreatment are known to influence the removal of certain components from pine wood sawdust, due to differences in the acid hydrolysis, which also predetermine the final formation and adsorptive properties of the produced activated carbon (AC) through subsequent potassium hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2017-07, Vol.52 (13), p.7664-7676
Hauptverfasser: Zhu, Guoting, Xing, Xianjun, Wang, Jiaquan, Zhang, Xianwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Different types of acid pretreatment are known to influence the removal of certain components from pine wood sawdust, due to differences in the acid hydrolysis, which also predetermine the final formation and adsorptive properties of the produced activated carbon (AC) through subsequent potassium hydroxide activation. AC made by using phosphorous acid as an acid pretreatment had the largest absorption capacity of methylene blue (MB) dye due to its highest acidity. Subsequently, the effects on the adsorption variables for this AC such as initial pH, MB concentration, contact time and temperature were investigated. The resulting adsorption process was classified as pseudo-second-order kinetic model, and the Langmuir isotherm model better described the equilibrium data in comparison with the Freundlich isotherm model. The outcome showed that a lower temperature had an increased adsorption capacity of sawdust-derived AC pretreated with phosphorous acid, which allowed maximum adsorption capacities of 303.03 mg/g at 30 °C, implying that the adsorption was an endothermic process. Phosphorous acid pretreatment and activation processes proved to be an effective strategy to prepare highly porous AC from sawdust, with high potential to cationic dye removal from liquid phases.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-017-1055-0