Effects of thiophene substituents on hole-transporting properties of dipolar chromophores for perovskite solar cells

We present a theoretical investigation of thiophene substituent effects on the electrochemical properties of dipolar chromophores (TCNE, TCNE22 and TCNE24) as hole-transporting materials (HTMs) in perovskite solar cells (PSCs). Herein, the material properties in crystalline phases are explored by us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2018-05, Vol.53 (9), p.6626-6636
Hauptverfasser: Cui, Jianyu, Rao, Wei, Hu, Weixia, Zhang, Zemin, Shen, Wei, Li, Ming, He, Rongxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6636
container_issue 9
container_start_page 6626
container_title Journal of materials science
container_volume 53
creator Cui, Jianyu
Rao, Wei
Hu, Weixia
Zhang, Zemin
Shen, Wei
Li, Ming
He, Rongxing
description We present a theoretical investigation of thiophene substituent effects on the electrochemical properties of dipolar chromophores (TCNE, TCNE22 and TCNE24) as hole-transporting materials (HTMs) in perovskite solar cells (PSCs). Herein, the material properties in crystalline phases are explored by using the first-principle calculations combined with Marcus theory. The results show that the increased number of thiophene substituents for TCNE, TCNE22 and TCNE24 results in a redshift of the absorption spectrum (27–46 nm). Furthermore, both TCNE22 and TCNE24 have maximum absorption peaks at a wavelength of 400 nm. Most importantly, the molecular planarity is improved effectively, which generates strong intermolecular face-to-face π – π packing interaction. The higher hole mobility of TCNE24 (2.069 × 10 −1  cm 2  V −1  s −1 ) with four thiophene substituents is obtained due to the face-to-face π – π packing. The new designed TCNE24 not only has excellent spectral property, but also has strong hole mobility. Therefore, TCNE24 is a promising organic small-molecule HTMs. Our work provides theoretical guidance for designing higher-performance HTMs in PSCs.
doi_str_mv 10.1007/s10853-017-1810-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2259634030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A527380287</galeid><sourcerecordid>A527380287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-e7bf4e3ec4fb9b4afb91cdf2302a517b71418e9b30a5acdf00cf22f18673f6e3</originalsourceid><addsrcrecordid>eNp1kVFrHCEUhaW00E3aH9C3gT71weSqM-vsYwhJGggE2ryL4153TWd1qk5I_33vdgIhD0VQufc7xyuHsS8CzgSAPi8C-k5xEJqLXgCX79hKdFrxtgf1nq0ApOSyXYuP7KSURwDotBQrVq-8R1dLk3xT9yFNe4zYlHkoNdQZ47ETm30akddsY5lSriHumimnCemK_5TbMKXR5sbtczqQR8pU9yk3xKSn8itU8lwIHMfyiX3wdiz4-eU8ZQ_XVw-X3_nd_c3t5cUdd63sK0c9-BYVutYPm6G1tAu39VKBtJ3Qgxat6HEzKLCdpQaA81J60a-18mtUp-zrYkvD_p6xVPOY5hzpRSNlt1mrFhQQdbZQOzuiCdEn-qijtcVDcCmiD1S_6KRWPchek-DbGwExFZ_rzs6lmNufP96yYmFdTqVk9GbK4WDzHyPAHIMzS3CGgjPH4IwkjVw0hdi4w_w69v9FfwHEhp2L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259634030</pqid></control><display><type>article</type><title>Effects of thiophene substituents on hole-transporting properties of dipolar chromophores for perovskite solar cells</title><source>Springer Nature - Complete Springer Journals</source><creator>Cui, Jianyu ; Rao, Wei ; Hu, Weixia ; Zhang, Zemin ; Shen, Wei ; Li, Ming ; He, Rongxing</creator><creatorcontrib>Cui, Jianyu ; Rao, Wei ; Hu, Weixia ; Zhang, Zemin ; Shen, Wei ; Li, Ming ; He, Rongxing</creatorcontrib><description>We present a theoretical investigation of thiophene substituent effects on the electrochemical properties of dipolar chromophores (TCNE, TCNE22 and TCNE24) as hole-transporting materials (HTMs) in perovskite solar cells (PSCs). Herein, the material properties in crystalline phases are explored by using the first-principle calculations combined with Marcus theory. The results show that the increased number of thiophene substituents for TCNE, TCNE22 and TCNE24 results in a redshift of the absorption spectrum (27–46 nm). Furthermore, both TCNE22 and TCNE24 have maximum absorption peaks at a wavelength of 400 nm. Most importantly, the molecular planarity is improved effectively, which generates strong intermolecular face-to-face π – π packing interaction. The higher hole mobility of TCNE24 (2.069 × 10 −1  cm 2  V −1  s −1 ) with four thiophene substituents is obtained due to the face-to-face π – π packing. The new designed TCNE24 not only has excellent spectral property, but also has strong hole mobility. Therefore, TCNE24 is a promising organic small-molecule HTMs. Our work provides theoretical guidance for designing higher-performance HTMs in PSCs.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-017-1810-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorption spectra ; Analysis ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chromophores ; Classical Mechanics ; Computation ; Crystallography and Scattering Methods ; Electrochemical analysis ; First principles ; Hole mobility ; Material properties ; Materials Science ; Perovskite ; Perovskites ; Photovoltaic cells ; Polymer Sciences ; Red shift ; Solar batteries ; Solar cells ; Solid Mechanics ; Thiophene ; Transportation</subject><ispartof>Journal of materials science, 2018-05, Vol.53 (9), p.6626-6636</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-e7bf4e3ec4fb9b4afb91cdf2302a517b71418e9b30a5acdf00cf22f18673f6e3</citedby><cites>FETCH-LOGICAL-c428t-e7bf4e3ec4fb9b4afb91cdf2302a517b71418e9b30a5acdf00cf22f18673f6e3</cites><orcidid>0000-0003-3100-2722 ; 0000-0001-8145-057X ; 0000-0002-4249-9888 ; 0000-0003-0845-6259 ; 0000-0002-3279-0209 ; 0000-0002-3448-4272 ; 0000-0003-2245-6140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-017-1810-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-017-1810-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Cui, Jianyu</creatorcontrib><creatorcontrib>Rao, Wei</creatorcontrib><creatorcontrib>Hu, Weixia</creatorcontrib><creatorcontrib>Zhang, Zemin</creatorcontrib><creatorcontrib>Shen, Wei</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>He, Rongxing</creatorcontrib><title>Effects of thiophene substituents on hole-transporting properties of dipolar chromophores for perovskite solar cells</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>We present a theoretical investigation of thiophene substituent effects on the electrochemical properties of dipolar chromophores (TCNE, TCNE22 and TCNE24) as hole-transporting materials (HTMs) in perovskite solar cells (PSCs). Herein, the material properties in crystalline phases are explored by using the first-principle calculations combined with Marcus theory. The results show that the increased number of thiophene substituents for TCNE, TCNE22 and TCNE24 results in a redshift of the absorption spectrum (27–46 nm). Furthermore, both TCNE22 and TCNE24 have maximum absorption peaks at a wavelength of 400 nm. Most importantly, the molecular planarity is improved effectively, which generates strong intermolecular face-to-face π – π packing interaction. The higher hole mobility of TCNE24 (2.069 × 10 −1  cm 2  V −1  s −1 ) with four thiophene substituents is obtained due to the face-to-face π – π packing. The new designed TCNE24 not only has excellent spectral property, but also has strong hole mobility. Therefore, TCNE24 is a promising organic small-molecule HTMs. Our work provides theoretical guidance for designing higher-performance HTMs in PSCs.</description><subject>Absorption spectra</subject><subject>Analysis</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chromophores</subject><subject>Classical Mechanics</subject><subject>Computation</subject><subject>Crystallography and Scattering Methods</subject><subject>Electrochemical analysis</subject><subject>First principles</subject><subject>Hole mobility</subject><subject>Material properties</subject><subject>Materials Science</subject><subject>Perovskite</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Polymer Sciences</subject><subject>Red shift</subject><subject>Solar batteries</subject><subject>Solar cells</subject><subject>Solid Mechanics</subject><subject>Thiophene</subject><subject>Transportation</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kVFrHCEUhaW00E3aH9C3gT71weSqM-vsYwhJGggE2ryL4153TWd1qk5I_33vdgIhD0VQufc7xyuHsS8CzgSAPi8C-k5xEJqLXgCX79hKdFrxtgf1nq0ApOSyXYuP7KSURwDotBQrVq-8R1dLk3xT9yFNe4zYlHkoNdQZ47ETm30akddsY5lSriHumimnCemK_5TbMKXR5sbtczqQR8pU9yk3xKSn8itU8lwIHMfyiX3wdiz4-eU8ZQ_XVw-X3_nd_c3t5cUdd63sK0c9-BYVutYPm6G1tAu39VKBtJ3Qgxat6HEzKLCdpQaA81J60a-18mtUp-zrYkvD_p6xVPOY5hzpRSNlt1mrFhQQdbZQOzuiCdEn-qijtcVDcCmiD1S_6KRWPchek-DbGwExFZ_rzs6lmNufP96yYmFdTqVk9GbK4WDzHyPAHIMzS3CGgjPH4IwkjVw0hdi4w_w69v9FfwHEhp2L</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Cui, Jianyu</creator><creator>Rao, Wei</creator><creator>Hu, Weixia</creator><creator>Zhang, Zemin</creator><creator>Shen, Wei</creator><creator>Li, Ming</creator><creator>He, Rongxing</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3100-2722</orcidid><orcidid>https://orcid.org/0000-0001-8145-057X</orcidid><orcidid>https://orcid.org/0000-0002-4249-9888</orcidid><orcidid>https://orcid.org/0000-0003-0845-6259</orcidid><orcidid>https://orcid.org/0000-0002-3279-0209</orcidid><orcidid>https://orcid.org/0000-0002-3448-4272</orcidid><orcidid>https://orcid.org/0000-0003-2245-6140</orcidid></search><sort><creationdate>20180501</creationdate><title>Effects of thiophene substituents on hole-transporting properties of dipolar chromophores for perovskite solar cells</title><author>Cui, Jianyu ; Rao, Wei ; Hu, Weixia ; Zhang, Zemin ; Shen, Wei ; Li, Ming ; He, Rongxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-e7bf4e3ec4fb9b4afb91cdf2302a517b71418e9b30a5acdf00cf22f18673f6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption spectra</topic><topic>Analysis</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chromophores</topic><topic>Classical Mechanics</topic><topic>Computation</topic><topic>Crystallography and Scattering Methods</topic><topic>Electrochemical analysis</topic><topic>First principles</topic><topic>Hole mobility</topic><topic>Material properties</topic><topic>Materials Science</topic><topic>Perovskite</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Polymer Sciences</topic><topic>Red shift</topic><topic>Solar batteries</topic><topic>Solar cells</topic><topic>Solid Mechanics</topic><topic>Thiophene</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Jianyu</creatorcontrib><creatorcontrib>Rao, Wei</creatorcontrib><creatorcontrib>Hu, Weixia</creatorcontrib><creatorcontrib>Zhang, Zemin</creatorcontrib><creatorcontrib>Shen, Wei</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>He, Rongxing</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Jianyu</au><au>Rao, Wei</au><au>Hu, Weixia</au><au>Zhang, Zemin</au><au>Shen, Wei</au><au>Li, Ming</au><au>He, Rongxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of thiophene substituents on hole-transporting properties of dipolar chromophores for perovskite solar cells</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>53</volume><issue>9</issue><spage>6626</spage><epage>6636</epage><pages>6626-6636</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>We present a theoretical investigation of thiophene substituent effects on the electrochemical properties of dipolar chromophores (TCNE, TCNE22 and TCNE24) as hole-transporting materials (HTMs) in perovskite solar cells (PSCs). Herein, the material properties in crystalline phases are explored by using the first-principle calculations combined with Marcus theory. The results show that the increased number of thiophene substituents for TCNE, TCNE22 and TCNE24 results in a redshift of the absorption spectrum (27–46 nm). Furthermore, both TCNE22 and TCNE24 have maximum absorption peaks at a wavelength of 400 nm. Most importantly, the molecular planarity is improved effectively, which generates strong intermolecular face-to-face π – π packing interaction. The higher hole mobility of TCNE24 (2.069 × 10 −1  cm 2  V −1  s −1 ) with four thiophene substituents is obtained due to the face-to-face π – π packing. The new designed TCNE24 not only has excellent spectral property, but also has strong hole mobility. Therefore, TCNE24 is a promising organic small-molecule HTMs. Our work provides theoretical guidance for designing higher-performance HTMs in PSCs.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-017-1810-2</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3100-2722</orcidid><orcidid>https://orcid.org/0000-0001-8145-057X</orcidid><orcidid>https://orcid.org/0000-0002-4249-9888</orcidid><orcidid>https://orcid.org/0000-0003-0845-6259</orcidid><orcidid>https://orcid.org/0000-0002-3279-0209</orcidid><orcidid>https://orcid.org/0000-0002-3448-4272</orcidid><orcidid>https://orcid.org/0000-0003-2245-6140</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2018-05, Vol.53 (9), p.6626-6636
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2259634030
source Springer Nature - Complete Springer Journals
subjects Absorption spectra
Analysis
Characterization and Evaluation of Materials
Chemistry and Materials Science
Chromophores
Classical Mechanics
Computation
Crystallography and Scattering Methods
Electrochemical analysis
First principles
Hole mobility
Material properties
Materials Science
Perovskite
Perovskites
Photovoltaic cells
Polymer Sciences
Red shift
Solar batteries
Solar cells
Solid Mechanics
Thiophene
Transportation
title Effects of thiophene substituents on hole-transporting properties of dipolar chromophores for perovskite solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A50%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20thiophene%20substituents%20on%20hole-transporting%20properties%20of%20dipolar%20chromophores%20for%20perovskite%20solar%20cells&rft.jtitle=Journal%20of%20materials%20science&rft.au=Cui,%20Jianyu&rft.date=2018-05-01&rft.volume=53&rft.issue=9&rft.spage=6626&rft.epage=6636&rft.pages=6626-6636&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-017-1810-2&rft_dat=%3Cgale_proqu%3EA527380287%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259634030&rft_id=info:pmid/&rft_galeid=A527380287&rfr_iscdi=true