Effects of thiophene substituents on hole-transporting properties of dipolar chromophores for perovskite solar cells

We present a theoretical investigation of thiophene substituent effects on the electrochemical properties of dipolar chromophores (TCNE, TCNE22 and TCNE24) as hole-transporting materials (HTMs) in perovskite solar cells (PSCs). Herein, the material properties in crystalline phases are explored by us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2018-05, Vol.53 (9), p.6626-6636
Hauptverfasser: Cui, Jianyu, Rao, Wei, Hu, Weixia, Zhang, Zemin, Shen, Wei, Li, Ming, He, Rongxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a theoretical investigation of thiophene substituent effects on the electrochemical properties of dipolar chromophores (TCNE, TCNE22 and TCNE24) as hole-transporting materials (HTMs) in perovskite solar cells (PSCs). Herein, the material properties in crystalline phases are explored by using the first-principle calculations combined with Marcus theory. The results show that the increased number of thiophene substituents for TCNE, TCNE22 and TCNE24 results in a redshift of the absorption spectrum (27–46 nm). Furthermore, both TCNE22 and TCNE24 have maximum absorption peaks at a wavelength of 400 nm. Most importantly, the molecular planarity is improved effectively, which generates strong intermolecular face-to-face π – π packing interaction. The higher hole mobility of TCNE24 (2.069 × 10 −1  cm 2  V −1  s −1 ) with four thiophene substituents is obtained due to the face-to-face π – π packing. The new designed TCNE24 not only has excellent spectral property, but also has strong hole mobility. Therefore, TCNE24 is a promising organic small-molecule HTMs. Our work provides theoretical guidance for designing higher-performance HTMs in PSCs.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-017-1810-2