Selective laser melting of H13: microstructure and residual stress

In this research, samples of the H13 steel, a commonly used hot work tool steel in the die/mould manufacturing industry, were additively manufactured using selective laser melting (SLM). Their as-built microstructures were characterised in detail using transmission electron microscopy (TEM) and comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2017-10, Vol.52 (20), p.12476-12485
Hauptverfasser: Yan, J. J., Zheng, D. L., Li, H. X., Jia, X., Sun, J. F., Li, Y. L., Qian, M., Yan, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this research, samples of the H13 steel, a commonly used hot work tool steel in the die/mould manufacturing industry, were additively manufactured using selective laser melting (SLM). Their as-built microstructures were characterised in detail using transmission electron microscopy (TEM) and compared with that of the conventionally manufactured H13 (as-supplied). SLM resulted in the formation of martensite and also its partial decomposition into fine α-Fe and Fe 3 C precipitates along with retained austenite. TEM analyses further revealed that the lattice of the resulting α-Fe phase is slightly distorted due to enhanced Cr, Mo and V contents. Substantially high residual stresses in the range of 940–1420 MPa were detected in the as-built H13 samples compared with its yield strength of ~1650 MPa. In addition, it was identified that the high residual stress existed from just about two additive layers (100 µm) above the substrate along the build direction. The high residual stresses were mainly attributed to the martensitic transformation that occurred during SLM. The research findings of this study suggest that the substantially high residual stresses can be easily problematic in the AM of intricate H13 dies or moulds by SLM.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-017-1380-3