Microstructural evolution and the effect on hardness of Sanicro 25 welded joint base metal after creep at 973 K

The microstructural evolution and the hardness of Sanicro 25 welded joint base metal after creep at 973 K were investigated, aiming to determine which precipitate is the most important to affect the change in hardness. The precipitates in as-received specimen consist of primary NbCrN and NbC. Creep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2017-06, Vol.52 (11), p.6161-6172
Hauptverfasser: Zhou, Renyuan, Zhu, Lihui, Liu, Yanyan, Lu, Zhengran, Chen, Liang, Ma, Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The microstructural evolution and the hardness of Sanicro 25 welded joint base metal after creep at 973 K were investigated, aiming to determine which precipitate is the most important to affect the change in hardness. The precipitates in as-received specimen consist of primary NbCrN and NbC. Creep at 973 K results in the precipitation of secondary NbCrN and Cu-rich particles which grow slightly and M 23 C 6 which coarsens noticeably. The precipitation of secondary NbCrN, Cu-rich particles and M 23 C 6 greatly increases the hardness in the early stage of creep. However, when the creep rupture time falls in the range from 582 to 4265 h, the hardness is reduced mainly owing to the growth of Cu-rich particles. With further creep, the growth of both secondary NbCrN and Cu-rich particles decreases the hardness furthermore. It is thus concluded that both secondary NbCrN and Cu-rich particles are the key precipitates to affect the hardness change in Sanicro 25 welded joint base metal after creep at 973 K.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-017-0758-6