Hot compressive deformation behavior and electron backscattering diffraction analysis of Mg95.50Zn3.71Y0.79 fine-grained alloy solidified under high pressure

An Mg 95.50 Zn 3.71 Y 0.79 fine-grained solidified alloy with a grain size of 16 μm was prepared by high-pressure solidification. The microstructure characteristics and hot compressive deformation behavior of the alloy solidified under high pressure were compared with the atmospheric-pressure solidi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2018-02, Vol.53 (4), p.2880-2891
Hauptverfasser: Zhibin, Fan, Xiaoping, Lin, Yun, Dong, Rui, Xu, Lin, Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An Mg 95.50 Zn 3.71 Y 0.79 fine-grained solidified alloy with a grain size of 16 μm was prepared by high-pressure solidification. The microstructure characteristics and hot compressive deformation behavior of the alloy solidified under high pressure were compared with the atmospheric-pressure solidified alloy by carrying out the unilateral compression tests under a strain rate in the range of 0.001–1.0 s −1 and at a deformation temperature in the range of 523–573 K. The true stress-true strain curve of the high-pressure solidified alloy shows the typical dynamic recrystallization rheological curve. EBSD results show that when the deformation was carried out at 573 K, nearly 90% dynamic recrystallization occurred in the high-pressure solidified alloy, and the newly formed grains were distortionless and had low dislocation density. The high-pressure solidified alloy showed a double-peak basal texture at a strain rate of 1.0 s −1 . The two peak points showed a maximum pole density of 9.88 and 7.91, less than that in atmospheric-pressure alloy. When the deformation was carried out at the following conditions: deformation temperature = 573 K, strain rate = 0.001, and true strain = 0.9, the average Schmid factor (SF) for basal slip of the grains in the high-pressure solidified alloy was 0.419, and SF value for basal slip in 91% grains was greater than 0.3.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-017-1698-x