Effect of filler functionalization on thermo-mechanical properties of polyamide-12/carbon nanofibers composites: a study of filler–matrix molecular interactions

The effect of carbon nanofiber (CNF) functionalization on the thermo-mechanical properties of polyamide-12/CNF nanocomposites was investigated. Three main different surface treatments were performed to obtain CNF-OH (OH rich), CNF-Silane (C 6 H 5 Si–O–), and CNF-peroxide. CNF modified with poly-( te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2013-12, Vol.48 (24), p.8427-8437
Hauptverfasser: Ghislandi, Marcos, de A. Prado, Luis A. S., Schulte, Karl, Barros-Timmons, Ana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of carbon nanofiber (CNF) functionalization on the thermo-mechanical properties of polyamide-12/CNF nanocomposites was investigated. Three main different surface treatments were performed to obtain CNF-OH (OH rich), CNF-Silane (C 6 H 5 Si–O–), and CNF-peroxide. CNF modified with poly-( tert -butyl acrylate) chains grown from the surface via ATRP (atom transfer radical polymerization) were also prepared and tested. The modified CNFs and neat CNFs were used as fillers in polyamide-12 nanocomposites and the properties of the ensuing materials were characterized and compared. Universal tensile tests demonstrated a substantial increase (up to 20 %) of the yield strength, without reduction of the final elongation, for all functionalized samples tested within 1 wt% filler content. Further evidences of mechanical properties improvement were given by dynamic mechanical thermal analyses. CNFs functionalized with poly-( tert -butyl acrylate) and silane exhibited the best performance with stiffening and strengthening at low (≤1 wt%) filler loadings, via a partial decrease of the intensity of β-transitions attributed to favorable interactions between the functional groups on the surface of functionalized CNFs and polyamide-12. CNFs treated with peroxide proved to be the most simple preparation technique and the ensuing nanocomposites exhibited the highest storage modulus at high (5 wt%) filler content. Theoretical simulations using the micro-mechanics model were used to predict the Young modulus of the composites and compare them with experimental data. The results obtained suggest a synergistic effect between the matrix and the filler enhanced by surface functionalization.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-013-7655-4