First-principles study on the effect and magnetism of iron segregation in Cu grain boundary

The atomic configurations and electronic structures of iron on CuΣ5 symmetrical tilt grain boundary (GB) have been studied based on the density functional theory. Different segregation positions of iron are considered. A weak tendency of iron segregating to GB is arrived due to the segregation energ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2017-04, Vol.52 (8), p.4309-4322
Hauptverfasser: Meng, Fanshun, Lu, Xiaoming, Liu, Yongli, Qi, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The atomic configurations and electronic structures of iron on CuΣ5 symmetrical tilt grain boundary (GB) have been studied based on the density functional theory. Different segregation positions of iron are considered. A weak tendency of iron segregating to GB is arrived due to the segregation energy. In addition, iron segregation shows a cohesion strengthening effect of Cu GB according to Rice–Wang model, which is mainly contributed by the charge redistribution. Finally, an enhancement of the local magnetic moment of iron in Cu GB or bulk or surface is explored due to larger atomic volume than the FCC iron crystal and the Cu atoms surrounding iron are slightly polarized by the doped iron. This study can enrich the understanding of the effects of iron on the cohesion of Cu–Fe alloy and also might supply an indirect guidance to expand the application of Cu–Fe alloy in electronic device manufacture field.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-016-0526-z