Wild Felid Range Shift Due to Climatic Constraints in the Americas: a Bottleneck Explanation for Extinct Felids?
Theoretical and empirical evidence suggests that the ecological niche of species tends to be conservative over evolutionary time in many taxonomic groups, thus representing long-term stable constraints on species geographic distributions. Using an ecological niche modeling approach, we assessed the...
Gespeichert in:
Veröffentlicht in: | Journal of mammalian evolution 2017-12, Vol.24 (4), p.427-438 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Theoretical and empirical evidence suggests that the ecological niche of species tends to be conservative over evolutionary time in many taxonomic groups, thus representing long-term stable constraints on species geographic distributions. Using an ecological niche modeling approach, we assessed the impact of climatic change on wild felid species potential range shifts over the last 130 K years in the Americas and the potential of such shifts as an extinction driver. We found a significant range shift for most species (both living and extinct) across their distributions driven by large-scale environmental changes. Proportionally, the most drastic range increase for all species occurred in the Last Glacial Maximum (LGM: 18 K years)–Current transition, while for the Last Inter-Glacial (LIG: 130 K years)–LGM transition an important range reduction occurred, which was larger for extinct North American species. In conclusion, the reduction of climatically suitable areas for many species in the transition LIG–LGM may have produced population reductions, which, in turn, may have played an important role in species’ extinction throughout the continent. |
---|---|
ISSN: | 1064-7554 1573-7055 |
DOI: | 10.1007/s10914-016-9350-0 |