Effects of processing temperature on the oxygen quenching behavior of tris(4,7'-diphenyl-1,10'-phenanthroline) ruthenium (II) sequestered within sol-gel-derived xerogel films
Sol-gel processing methods offer novel pathways for tailoring glasses. Amongst the issues that have received the least attention are the effects of the curing temperature on the behavior and photophysics of a dopant molecule sequestered within a sol-gel-derived xerogel. Of particular interest to our...
Gespeichert in:
Veröffentlicht in: | Journal of sol-gel science and technology 2000, Vol.17 (1), p.71-82 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sol-gel processing methods offer novel pathways for tailoring glasses. Amongst the issues that have received the least attention are the effects of the curing temperature on the behavior and photophysics of a dopant molecule sequestered within a sol-gel-derived xerogel. Of particular interest to our group are the effects of processing variables on the ability of a dopant molecule, that is sequestered within a xerogel glass, to be accessed by an analyte and the distribution of the dopant sites within the xerogel. The thermal stability of the luminophore tris(4,7′-diphenyl-1,10′-phenanthroline) ruthenium (II) ([Ru(dpp)3]2+) provides a convenient way to address these issues and develop an understanding of how one might best exploit curing temperature to construct improved chemical sensors. This paper focuses on quantifying how the film curing temperature affects the spectroscopy and O2 quenching of ([Ru(dpp)3]2+) sequestered within sol-gel-derived xerogel thin films. Our quenching data on films once they have been cured demonstrate that there is a dramatic increase in the sensitivity of the ([Ru(dpp)3]2+) molecules to O2 quenching when the films have been cured at elevated temperatures. This arises primarily because there are two main types of ([Ru(dpp)3]2+) microenvironments within the glass and higher temperature curing leads to an increase in the bimolecular quenching rate between O2 and ([Ru(dpp)3]2+). This is accomplished as follows. Below a curing temperature of 100–150°C, ∼15% of the xerogel-doped ([Ru(dpp)3]2+) molecules are not accessed to any detectable degree by the O2 molecules during the ([Ru(dpp)3]2+) excited-state luminescence lifetime. However, as the xerogel is cured at or above 150°C, residual silanol-bound waters (or other impurities) dissociate from the xerogel and those ([Ru(dpp)3]2+) molecules that were initially inaccessible become accessible to O2. The dissociation of these water molecules, plus other events, also causes the originally inaccessible ([Ru(dpp)3]2+) population to ultimately exhibit a quenching rate that is greater than the fraction of initially accessible ([Ru(dpp)3]2+) molecules that were formed under ambient curing conditions. |
---|---|
ISSN: | 0928-0707 1573-4846 |
DOI: | 10.1023/A:1008765106291 |