Low Temperature Bonding of Ceramics by Sol-Gel Processing
Sol-gel bonds were produced between smooth, clean silicon or polycrystalline alumina substrates by spin-coating solutions containing partially hydrolysed silicon alkoxides onto both substrates. The two coated substrates were assembled and the resulting sandwich was fired at temperatures ranging from...
Gespeichert in:
Veröffentlicht in: | Journal of sol-gel science and technology 2000-12, Vol.19 (1-3), p.321-324 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sol-gel bonds were produced between smooth, clean silicon or polycrystalline alumina substrates by spin-coating solutions containing partially hydrolysed silicon alkoxides onto both substrates. The two coated substrates were assembled and the resulting sandwich was fired at temperatures ranging from 300 to 600°C. The influence of the sol-gel chemistry on the film microstructure and interfacial fracture energy was investigated using a wide range of techniques, including ellipsometry, FTIR, TG-DTA, rheology, TEM and micro-indentation. For silicon wafers, an optimum water-alkoxide molar ratio of 10 and hydrolysis water pH of 2 were found. Such conditions led to relatively dense films (>90%), resulting in bonds with significantly higher fracture energy (3.5 J/m2) than those obtained using classical water bonding (typically 1.5 J/m2). Aging of the coating solution was found to decrease the bond strength. Poly-crystalline alumina substrates were similarly bonded at 600°C; the optimised silica sol-gel chemistry yielded interfaces with fracture energy of 4 J/m2. |
---|---|
ISSN: | 0928-0707 1573-4846 |
DOI: | 10.1023/A:1008733632163 |