Comparison of Different High and Low Index Materials in the Manufacture of High Laser Damage Threshold Mirrors at the 351 nm Wavelength
Sol-gel material based mirrors have been produced by forming alternate layers of high refractive index and low refractive index thin films. These mirrors have proven to have a high laser induced damage threshold [LIDT]. Using nitric acid stabilized zirconia derived from zirconium-n-propoxide and bas...
Gespeichert in:
Veröffentlicht in: | Journal of sol-gel science and technology 1998-01, Vol.13 (1-3), p.757-761 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sol-gel material based mirrors have been produced by forming alternate layers of high refractive index and low refractive index thin films. These mirrors have proven to have a high laser induced damage threshold [LIDT]. Using nitric acid stabilized zirconia derived from zirconium-n-propoxide and base catalyzed silica, a 16 layer mirror with a reflectivity of better than 94% at 351 nm and 45° angle of incidence was fabricated. This had an LIDT of 7.7 J/cm2 at 351 nm with a 0.7 ns pulse width. Crazing prevented further layers being deposited. Both spin and dip coating were attempted with dip coating yielding the best results.The coating structure has been analyzed using XPS depth profiling and AES. The bulk materials have been investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD) and TGA. High refractive index layers using Hafnia with nitric or acetic acid have also been investigated as prospective high LIDT mirrors.Alternative acidic routes to silica have been studied as a possible low index material and a route to preventing crazing. |
---|---|
ISSN: | 0928-0707 1573-4846 |
DOI: | 10.1023/A:1008617727647 |