Facile preparation of ZrCO composite aerogel with high specific surface area and low thermal conductivity

A novel ZrCO composite aerogel is synthesized using zirconium oxychloride and resorcinol–formaldehyde (RF) as precursors through the sol–gel route and carbothermal reduction process. The effects of different Zr/R molar ratios and calcination temperatures on the physical chemistry properties of ZrCO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sol-gel science and technology 2018-05, Vol.86 (2), p.383-390
Hauptverfasser: Cui, Sheng, Suo, Hao, Jing, Feng, Yu, Shuwen, Xue, Jun, Shen, Xiaodong, Lin, Benlan, Jiang, Shengjun, Liu, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 390
container_issue 2
container_start_page 383
container_title Journal of sol-gel science and technology
container_volume 86
creator Cui, Sheng
Suo, Hao
Jing, Feng
Yu, Shuwen
Xue, Jun
Shen, Xiaodong
Lin, Benlan
Jiang, Shengjun
Liu, Yu
description A novel ZrCO composite aerogel is synthesized using zirconium oxychloride and resorcinol–formaldehyde (RF) as precursors through the sol–gel route and carbothermal reduction process. The effects of different Zr/R molar ratios and calcination temperatures on the physical chemistry properties of ZrCO aerogels are investigated. The ZrCO composite aerogel consists of the C/ZrO 2 /ZrC ternary aerogel. The results show that with the increase of R/Zr molar ratios, the specific surface area and bulk density increase with calcination temperature up to 1300 °C, but decrease at even temperature (1500 °C). The specific surface area is as high as 637.4 m 2 /g for ZrCO composite aerogel (R:Zr = 2:1), which was higher than ever reported. As the heat-treatment temperature increases to 1500 °C, the ZrC crystalline phase occurs and the t-ZrO 2 phase still appears within the composite. The thermal conductivity of the carbon fiber mat-reinforced composite aerogel is as low as 0.057 W/m/K at room temperature (25 °C).
doi_str_mv 10.1007/s10971-018-4638-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259521007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259521007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-9a3d457300d5c0af783f11dc2f660eea0213ae53d68606b0ef21946674501d6e3</originalsourceid><addsrcrecordid>eNp9kDtPwzAURi0EEuXxA9gsMQfutRM7GVHFS0JigYXFMs516yqNg51S8e9JVSQmmLyc71zrMHaBcIUA-jojNBoLwLoolawLdcBmWGlZlHWpDtkMGlEXoEEfs5OcVwBQlahnLNxZFzriQ6LBJjuG2PPo-VuaP3MX10PMYSRuKcUFdXwbxiVfhsWS54Fc8MHxvEneuglJZLntW97FLR-XlNa2mwx9u3Fj-Azj1xk78rbLdP7znrLXu9uX-UPx9Hz_OL95KpyscSwaK9ty-jhAWzmwXtfSI7ZOeKWAyIJAaamSraoVqHcgL7ApldJlBdgqkqfscu8dUvzYUB7NKm5SP500QlRNJXa9_qVAolZCI04U7imXYs6JvBlSWNv0ZRDMzmP23c3U3ey6GzVtxH6TJ7ZfUPo1_z36BjobhNc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259521007</pqid></control><display><type>article</type><title>Facile preparation of ZrCO composite aerogel with high specific surface area and low thermal conductivity</title><source>Springer Nature - Complete Springer Journals</source><creator>Cui, Sheng ; Suo, Hao ; Jing, Feng ; Yu, Shuwen ; Xue, Jun ; Shen, Xiaodong ; Lin, Benlan ; Jiang, Shengjun ; Liu, Yu</creator><creatorcontrib>Cui, Sheng ; Suo, Hao ; Jing, Feng ; Yu, Shuwen ; Xue, Jun ; Shen, Xiaodong ; Lin, Benlan ; Jiang, Shengjun ; Liu, Yu</creatorcontrib><description>A novel ZrCO composite aerogel is synthesized using zirconium oxychloride and resorcinol–formaldehyde (RF) as precursors through the sol–gel route and carbothermal reduction process. The effects of different Zr/R molar ratios and calcination temperatures on the physical chemistry properties of ZrCO aerogels are investigated. The ZrCO composite aerogel consists of the C/ZrO 2 /ZrC ternary aerogel. The results show that with the increase of R/Zr molar ratios, the specific surface area and bulk density increase with calcination temperature up to 1300 °C, but decrease at even temperature (1500 °C). The specific surface area is as high as 637.4 m 2 /g for ZrCO composite aerogel (R:Zr = 2:1), which was higher than ever reported. As the heat-treatment temperature increases to 1500 °C, the ZrC crystalline phase occurs and the t-ZrO 2 phase still appears within the composite. The thermal conductivity of the carbon fiber mat-reinforced composite aerogel is as low as 0.057 W/m/K at room temperature (25 °C).</description><identifier>ISSN: 0928-0707</identifier><identifier>EISSN: 1573-4846</identifier><identifier>DOI: 10.1007/s10971-018-4638-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aerogels ; Bulk density ; Carbon fiber reinforced plastics ; Carbon fibers ; Ceramics ; Chemistry and Materials Science ; Composites ; cryogels ; etc. ; Glass ; Heat conductivity ; Heat transfer ; Heat treatment ; Inorganic Chemistry ; Materials Science ; Nanotechnology ; Natural Materials ; Optical and Electronic Materials ; Organic chemistry ; Original Paper: Nano- and macroporous materials (aerogels ; Physical chemistry ; Roasting ; Sol-gel processes ; Specific surface ; Surface area ; Temperature ; Thermal conductivity ; xerogels ; Zirconium carbide ; Zirconium dioxide</subject><ispartof>Journal of sol-gel science and technology, 2018-05, Vol.86 (2), p.383-390</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>Journal of Sol-Gel Science and Technology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-9a3d457300d5c0af783f11dc2f660eea0213ae53d68606b0ef21946674501d6e3</citedby><cites>FETCH-LOGICAL-c381t-9a3d457300d5c0af783f11dc2f660eea0213ae53d68606b0ef21946674501d6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10971-018-4638-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10971-018-4638-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Cui, Sheng</creatorcontrib><creatorcontrib>Suo, Hao</creatorcontrib><creatorcontrib>Jing, Feng</creatorcontrib><creatorcontrib>Yu, Shuwen</creatorcontrib><creatorcontrib>Xue, Jun</creatorcontrib><creatorcontrib>Shen, Xiaodong</creatorcontrib><creatorcontrib>Lin, Benlan</creatorcontrib><creatorcontrib>Jiang, Shengjun</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><title>Facile preparation of ZrCO composite aerogel with high specific surface area and low thermal conductivity</title><title>Journal of sol-gel science and technology</title><addtitle>J Sol-Gel Sci Technol</addtitle><description>A novel ZrCO composite aerogel is synthesized using zirconium oxychloride and resorcinol–formaldehyde (RF) as precursors through the sol–gel route and carbothermal reduction process. The effects of different Zr/R molar ratios and calcination temperatures on the physical chemistry properties of ZrCO aerogels are investigated. The ZrCO composite aerogel consists of the C/ZrO 2 /ZrC ternary aerogel. The results show that with the increase of R/Zr molar ratios, the specific surface area and bulk density increase with calcination temperature up to 1300 °C, but decrease at even temperature (1500 °C). The specific surface area is as high as 637.4 m 2 /g for ZrCO composite aerogel (R:Zr = 2:1), which was higher than ever reported. As the heat-treatment temperature increases to 1500 °C, the ZrC crystalline phase occurs and the t-ZrO 2 phase still appears within the composite. The thermal conductivity of the carbon fiber mat-reinforced composite aerogel is as low as 0.057 W/m/K at room temperature (25 °C).</description><subject>Aerogels</subject><subject>Bulk density</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fibers</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>cryogels</subject><subject>etc.</subject><subject>Glass</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Heat treatment</subject><subject>Inorganic Chemistry</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Organic chemistry</subject><subject>Original Paper: Nano- and macroporous materials (aerogels</subject><subject>Physical chemistry</subject><subject>Roasting</subject><subject>Sol-gel processes</subject><subject>Specific surface</subject><subject>Surface area</subject><subject>Temperature</subject><subject>Thermal conductivity</subject><subject>xerogels</subject><subject>Zirconium carbide</subject><subject>Zirconium dioxide</subject><issn>0928-0707</issn><issn>1573-4846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kDtPwzAURi0EEuXxA9gsMQfutRM7GVHFS0JigYXFMs516yqNg51S8e9JVSQmmLyc71zrMHaBcIUA-jojNBoLwLoolawLdcBmWGlZlHWpDtkMGlEXoEEfs5OcVwBQlahnLNxZFzriQ6LBJjuG2PPo-VuaP3MX10PMYSRuKcUFdXwbxiVfhsWS54Fc8MHxvEneuglJZLntW97FLR-XlNa2mwx9u3Fj-Azj1xk78rbLdP7znrLXu9uX-UPx9Hz_OL95KpyscSwaK9ty-jhAWzmwXtfSI7ZOeKWAyIJAaamSraoVqHcgL7ApldJlBdgqkqfscu8dUvzYUB7NKm5SP500QlRNJXa9_qVAolZCI04U7imXYs6JvBlSWNv0ZRDMzmP23c3U3ey6GzVtxH6TJ7ZfUPo1_z36BjobhNc</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Cui, Sheng</creator><creator>Suo, Hao</creator><creator>Jing, Feng</creator><creator>Yu, Shuwen</creator><creator>Xue, Jun</creator><creator>Shen, Xiaodong</creator><creator>Lin, Benlan</creator><creator>Jiang, Shengjun</creator><creator>Liu, Yu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180501</creationdate><title>Facile preparation of ZrCO composite aerogel with high specific surface area and low thermal conductivity</title><author>Cui, Sheng ; Suo, Hao ; Jing, Feng ; Yu, Shuwen ; Xue, Jun ; Shen, Xiaodong ; Lin, Benlan ; Jiang, Shengjun ; Liu, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-9a3d457300d5c0af783f11dc2f660eea0213ae53d68606b0ef21946674501d6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerogels</topic><topic>Bulk density</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fibers</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>cryogels</topic><topic>etc.</topic><topic>Glass</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Heat treatment</topic><topic>Inorganic Chemistry</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Organic chemistry</topic><topic>Original Paper: Nano- and macroporous materials (aerogels</topic><topic>Physical chemistry</topic><topic>Roasting</topic><topic>Sol-gel processes</topic><topic>Specific surface</topic><topic>Surface area</topic><topic>Temperature</topic><topic>Thermal conductivity</topic><topic>xerogels</topic><topic>Zirconium carbide</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Sheng</creatorcontrib><creatorcontrib>Suo, Hao</creatorcontrib><creatorcontrib>Jing, Feng</creatorcontrib><creatorcontrib>Yu, Shuwen</creatorcontrib><creatorcontrib>Xue, Jun</creatorcontrib><creatorcontrib>Shen, Xiaodong</creatorcontrib><creatorcontrib>Lin, Benlan</creatorcontrib><creatorcontrib>Jiang, Shengjun</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of sol-gel science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Sheng</au><au>Suo, Hao</au><au>Jing, Feng</au><au>Yu, Shuwen</au><au>Xue, Jun</au><au>Shen, Xiaodong</au><au>Lin, Benlan</au><au>Jiang, Shengjun</au><au>Liu, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile preparation of ZrCO composite aerogel with high specific surface area and low thermal conductivity</atitle><jtitle>Journal of sol-gel science and technology</jtitle><stitle>J Sol-Gel Sci Technol</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>86</volume><issue>2</issue><spage>383</spage><epage>390</epage><pages>383-390</pages><issn>0928-0707</issn><eissn>1573-4846</eissn><abstract>A novel ZrCO composite aerogel is synthesized using zirconium oxychloride and resorcinol–formaldehyde (RF) as precursors through the sol–gel route and carbothermal reduction process. The effects of different Zr/R molar ratios and calcination temperatures on the physical chemistry properties of ZrCO aerogels are investigated. The ZrCO composite aerogel consists of the C/ZrO 2 /ZrC ternary aerogel. The results show that with the increase of R/Zr molar ratios, the specific surface area and bulk density increase with calcination temperature up to 1300 °C, but decrease at even temperature (1500 °C). The specific surface area is as high as 637.4 m 2 /g for ZrCO composite aerogel (R:Zr = 2:1), which was higher than ever reported. As the heat-treatment temperature increases to 1500 °C, the ZrC crystalline phase occurs and the t-ZrO 2 phase still appears within the composite. The thermal conductivity of the carbon fiber mat-reinforced composite aerogel is as low as 0.057 W/m/K at room temperature (25 °C).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10971-018-4638-6</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0928-0707
ispartof Journal of sol-gel science and technology, 2018-05, Vol.86 (2), p.383-390
issn 0928-0707
1573-4846
language eng
recordid cdi_proquest_journals_2259521007
source Springer Nature - Complete Springer Journals
subjects Aerogels
Bulk density
Carbon fiber reinforced plastics
Carbon fibers
Ceramics
Chemistry and Materials Science
Composites
cryogels
etc.
Glass
Heat conductivity
Heat transfer
Heat treatment
Inorganic Chemistry
Materials Science
Nanotechnology
Natural Materials
Optical and Electronic Materials
Organic chemistry
Original Paper: Nano- and macroporous materials (aerogels
Physical chemistry
Roasting
Sol-gel processes
Specific surface
Surface area
Temperature
Thermal conductivity
xerogels
Zirconium carbide
Zirconium dioxide
title Facile preparation of ZrCO composite aerogel with high specific surface area and low thermal conductivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A10%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20preparation%20of%20ZrCO%20composite%20aerogel%20with%20high%20specific%20surface%20area%20and%20low%20thermal%20conductivity&rft.jtitle=Journal%20of%20sol-gel%20science%20and%20technology&rft.au=Cui,%20Sheng&rft.date=2018-05-01&rft.volume=86&rft.issue=2&rft.spage=383&rft.epage=390&rft.pages=383-390&rft.issn=0928-0707&rft.eissn=1573-4846&rft_id=info:doi/10.1007/s10971-018-4638-6&rft_dat=%3Cproquest_cross%3E2259521007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259521007&rft_id=info:pmid/&rfr_iscdi=true