Facile preparation of ZrCO composite aerogel with high specific surface area and low thermal conductivity
A novel ZrCO composite aerogel is synthesized using zirconium oxychloride and resorcinol–formaldehyde (RF) as precursors through the sol–gel route and carbothermal reduction process. The effects of different Zr/R molar ratios and calcination temperatures on the physical chemistry properties of ZrCO...
Gespeichert in:
Veröffentlicht in: | Journal of sol-gel science and technology 2018-05, Vol.86 (2), p.383-390 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel ZrCO composite aerogel is synthesized using zirconium oxychloride and resorcinol–formaldehyde (RF) as precursors through the sol–gel route and carbothermal reduction process. The effects of different Zr/R molar ratios and calcination temperatures on the physical chemistry properties of ZrCO aerogels are investigated. The ZrCO composite aerogel consists of the C/ZrO
2
/ZrC ternary aerogel. The results show that with the increase of R/Zr molar ratios, the specific surface area and bulk density increase with calcination temperature up to 1300 °C, but decrease at even temperature (1500 °C). The specific surface area is as high as 637.4 m
2
/g for ZrCO composite aerogel (R:Zr = 2:1), which was higher than ever reported. As the heat-treatment temperature increases to 1500 °C, the ZrC crystalline phase occurs and the t-ZrO
2
phase still appears within the composite. The thermal conductivity of the carbon fiber mat-reinforced composite aerogel is as low as 0.057 W/m/K at room temperature (25 °C). |
---|---|
ISSN: | 0928-0707 1573-4846 |
DOI: | 10.1007/s10971-018-4638-6 |