General soliton solutions to a (2+1)-dimensional nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions

We investigate a ( 2 + 1 ) -dimensional nonlocal nonlinear Schrödinger equation with the self-induced parity-time symmetric potential. By employing the Hirota’s bilinear method and the KP hierarchy reduction method, general soliton solutions to the ( 2 + 1 ) -dimensional nonlocal NLS equation with z...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2018-07, Vol.93 (2), p.721-731
Hauptverfasser: Liu, Wei, Li, Xiliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate a ( 2 + 1 ) -dimensional nonlocal nonlinear Schrödinger equation with the self-induced parity-time symmetric potential. By employing the Hirota’s bilinear method and the KP hierarchy reduction method, general soliton solutions to the ( 2 + 1 ) -dimensional nonlocal NLS equation with zero and nonzero boundary conditions are derived. These solutions are given in forms of Gram-type determinants. We first construct general bright solitons with zero boundary condition by constraining the tau functions of two-component KP hierarchy. Furthermore, we derive general dark and antidark solitons with nonzero boundary from the tau functions of single-component KP hierarchy.
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-018-4221-2