General soliton solutions to a (2+1)-dimensional nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions
We investigate a ( 2 + 1 ) -dimensional nonlocal nonlinear Schrödinger equation with the self-induced parity-time symmetric potential. By employing the Hirota’s bilinear method and the KP hierarchy reduction method, general soliton solutions to the ( 2 + 1 ) -dimensional nonlocal NLS equation with z...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2018-07, Vol.93 (2), p.721-731 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate a
(
2
+
1
)
-dimensional nonlocal nonlinear Schrödinger equation with the self-induced parity-time symmetric potential. By employing the Hirota’s bilinear method and the KP hierarchy reduction method, general soliton solutions to the
(
2
+
1
)
-dimensional nonlocal NLS equation with zero and nonzero boundary conditions are derived. These solutions are given in forms of Gram-type determinants. We first construct general bright solitons with zero boundary condition by constraining the tau functions of two-component KP hierarchy. Furthermore, we derive general dark and antidark solitons with nonzero boundary from the tau functions of single-component KP hierarchy. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-018-4221-2 |