Lie symmetries, integrable properties and exact solutions to the variable-coefficient nonlinear evolution equations

This paper is concerned with the variable-coefficient nonlinear evolution equations, which include the cylindrical KdV types of equations. By the combination of Painlevé analysis and Lie group classification method, the integrable conditions, Bäcklund transformations and Lax pairs of the equations a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2017-08, Vol.89 (3), p.1989-2000
Hauptverfasser: Liu, Hanze, Yue, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with the variable-coefficient nonlinear evolution equations, which include the cylindrical KdV types of equations. By the combination of Painlevé analysis and Lie group classification method, the integrable conditions, Bäcklund transformations and Lax pairs of the equations are obtained, all of the geometric vector fields of the equations are presented. Then, the relationship among Lie group classification, Painlevé analysis and CK transformation method is considered. Furthermore, the exact solutions generated from the Bäcklund transformations and symmetry reductions of the vc-KdV types of equations are investigated.
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-017-3566-2