Smooth positon solutions of the focusing modified Korteweg–de Vries equation

The n -fold Darboux transformation T n of the focusing real modified Korteweg–de Vries (mKdV) equation is expressed in terms of the determinant representation. Using this representation, the n -soliton solutions of the mKdV equation are also expressed by determinants whose elements consist of the ei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2017-09, Vol.89 (4), p.2299-2310
Hauptverfasser: Xing, Qiuxia, Wu, Zhiwei, Mihalache, Dumitru, He, Jingsong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2310
container_issue 4
container_start_page 2299
container_title Nonlinear dynamics
container_volume 89
creator Xing, Qiuxia
Wu, Zhiwei
Mihalache, Dumitru
He, Jingsong
description The n -fold Darboux transformation T n of the focusing real modified Korteweg–de Vries (mKdV) equation is expressed in terms of the determinant representation. Using this representation, the n -soliton solutions of the mKdV equation are also expressed by determinants whose elements consist of the eigenvalues λ j and the corresponding eigenfunctions of the associated Lax equation. The nonsingular n -positon solutions of the focusing mKdV equation are obtained in the special limit λ j → λ 1 , from the corresponding n -soliton solutions and by using the associated higher-order Taylor expansion. Furthermore, the decomposition method of the n -positon solution into n single-soliton solutions, the trajectories, and the corresponding “phase shifts” of the multi-positons are also investigated.
doi_str_mv 10.1007/s11071-017-3579-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259439030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1930131197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-5dfb13104926a61f5b9c652545bb86079d45c892a800bc2094583d225faf57883</originalsourceid><addsrcrecordid>eNp9kLtOwzAUQC0EEqXwAWyWmA3XdhzbI6p4iQoGHupm5WG3qdq4tRNRNv6BP-RLSBQGFpjucs69VwehUwrnFEBeREpBUgJUEi6kJrs9NKJCcsJSPdtHI9AsIaBhdoiOYlwCAGegRujhae19s8AbH6vG1zj6VdtUvo7YO9wsLHa-aGNVz_Hal5WrbInvfWjsm51_fXyWFr-GykZst23Wa8fowGWraE9-5hi9XF89T27J9PHmbnI5JQVXtCGidDnlFBLN0iylTuS6SAUTichzlYLUZSIKpVmmAPKCgU6E4iVjwmVOSKX4GJ0NezfBb1sbG7P0bai7k6ajdMI1cPiPoppD9wHVsqPoQBXBxxisM5tQrbPwbiiYPq4Z4pourunjml3nsMGJHVvPbfi1-U_pG1f5fLs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259439030</pqid></control><display><type>article</type><title>Smooth positon solutions of the focusing modified Korteweg–de Vries equation</title><source>Springer Nature - Complete Springer Journals</source><creator>Xing, Qiuxia ; Wu, Zhiwei ; Mihalache, Dumitru ; He, Jingsong</creator><creatorcontrib>Xing, Qiuxia ; Wu, Zhiwei ; Mihalache, Dumitru ; He, Jingsong</creatorcontrib><description>The n -fold Darboux transformation T n of the focusing real modified Korteweg–de Vries (mKdV) equation is expressed in terms of the determinant representation. Using this representation, the n -soliton solutions of the mKdV equation are also expressed by determinants whose elements consist of the eigenvalues λ j and the corresponding eigenfunctions of the associated Lax equation. The nonsingular n -positon solutions of the focusing mKdV equation are obtained in the special limit λ j → λ 1 , from the corresponding n -soliton solutions and by using the associated higher-order Taylor expansion. Furthermore, the decomposition method of the n -positon solution into n single-soliton solutions, the trajectories, and the corresponding “phase shifts” of the multi-positons are also investigated.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-017-3579-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Dynamical Systems ; Eigenvalues ; Eigenvectors ; Engineering ; Korteweg-Devries equation ; Mechanical Engineering ; Original Paper ; Representations ; Solitary waves ; Taylor series ; Vibration</subject><ispartof>Nonlinear dynamics, 2017-09, Vol.89 (4), p.2299-2310</ispartof><rights>Springer Science+Business Media Dordrecht 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-5dfb13104926a61f5b9c652545bb86079d45c892a800bc2094583d225faf57883</citedby><cites>FETCH-LOGICAL-c381t-5dfb13104926a61f5b9c652545bb86079d45c892a800bc2094583d225faf57883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-017-3579-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-017-3579-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Xing, Qiuxia</creatorcontrib><creatorcontrib>Wu, Zhiwei</creatorcontrib><creatorcontrib>Mihalache, Dumitru</creatorcontrib><creatorcontrib>He, Jingsong</creatorcontrib><title>Smooth positon solutions of the focusing modified Korteweg–de Vries equation</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>The n -fold Darboux transformation T n of the focusing real modified Korteweg–de Vries (mKdV) equation is expressed in terms of the determinant representation. Using this representation, the n -soliton solutions of the mKdV equation are also expressed by determinants whose elements consist of the eigenvalues λ j and the corresponding eigenfunctions of the associated Lax equation. The nonsingular n -positon solutions of the focusing mKdV equation are obtained in the special limit λ j → λ 1 , from the corresponding n -soliton solutions and by using the associated higher-order Taylor expansion. Furthermore, the decomposition method of the n -positon solution into n single-soliton solutions, the trajectories, and the corresponding “phase shifts” of the multi-positons are also investigated.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Engineering</subject><subject>Korteweg-Devries equation</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Representations</subject><subject>Solitary waves</subject><subject>Taylor series</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kLtOwzAUQC0EEqXwAWyWmA3XdhzbI6p4iQoGHupm5WG3qdq4tRNRNv6BP-RLSBQGFpjucs69VwehUwrnFEBeREpBUgJUEi6kJrs9NKJCcsJSPdtHI9AsIaBhdoiOYlwCAGegRujhae19s8AbH6vG1zj6VdtUvo7YO9wsLHa-aGNVz_Hal5WrbInvfWjsm51_fXyWFr-GykZst23Wa8fowGWraE9-5hi9XF89T27J9PHmbnI5JQVXtCGidDnlFBLN0iylTuS6SAUTichzlYLUZSIKpVmmAPKCgU6E4iVjwmVOSKX4GJ0NezfBb1sbG7P0bai7k6ajdMI1cPiPoppD9wHVsqPoQBXBxxisM5tQrbPwbiiYPq4Z4pourunjml3nsMGJHVvPbfi1-U_pG1f5fLs</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Xing, Qiuxia</creator><creator>Wu, Zhiwei</creator><creator>Mihalache, Dumitru</creator><creator>He, Jingsong</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170901</creationdate><title>Smooth positon solutions of the focusing modified Korteweg–de Vries equation</title><author>Xing, Qiuxia ; Wu, Zhiwei ; Mihalache, Dumitru ; He, Jingsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-5dfb13104926a61f5b9c652545bb86079d45c892a800bc2094583d225faf57883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Engineering</topic><topic>Korteweg-Devries equation</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Representations</topic><topic>Solitary waves</topic><topic>Taylor series</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Qiuxia</creatorcontrib><creatorcontrib>Wu, Zhiwei</creatorcontrib><creatorcontrib>Mihalache, Dumitru</creatorcontrib><creatorcontrib>He, Jingsong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Qiuxia</au><au>Wu, Zhiwei</au><au>Mihalache, Dumitru</au><au>He, Jingsong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smooth positon solutions of the focusing modified Korteweg–de Vries equation</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>89</volume><issue>4</issue><spage>2299</spage><epage>2310</epage><pages>2299-2310</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>The n -fold Darboux transformation T n of the focusing real modified Korteweg–de Vries (mKdV) equation is expressed in terms of the determinant representation. Using this representation, the n -soliton solutions of the mKdV equation are also expressed by determinants whose elements consist of the eigenvalues λ j and the corresponding eigenfunctions of the associated Lax equation. The nonsingular n -positon solutions of the focusing mKdV equation are obtained in the special limit λ j → λ 1 , from the corresponding n -soliton solutions and by using the associated higher-order Taylor expansion. Furthermore, the decomposition method of the n -positon solution into n single-soliton solutions, the trajectories, and the corresponding “phase shifts” of the multi-positons are also investigated.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-017-3579-x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2017-09, Vol.89 (4), p.2299-2310
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2259439030
source Springer Nature - Complete Springer Journals
subjects Automotive Engineering
Classical Mechanics
Control
Dynamical Systems
Eigenvalues
Eigenvectors
Engineering
Korteweg-Devries equation
Mechanical Engineering
Original Paper
Representations
Solitary waves
Taylor series
Vibration
title Smooth positon solutions of the focusing modified Korteweg–de Vries equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A52%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smooth%20positon%20solutions%20of%20the%20focusing%20modified%20Korteweg%E2%80%93de%20Vries%20equation&rft.jtitle=Nonlinear%20dynamics&rft.au=Xing,%20Qiuxia&rft.date=2017-09-01&rft.volume=89&rft.issue=4&rft.spage=2299&rft.epage=2310&rft.pages=2299-2310&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-017-3579-x&rft_dat=%3Cproquest_cross%3E1930131197%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259439030&rft_id=info:pmid/&rfr_iscdi=true