Smooth positon solutions of the focusing modified Korteweg–de Vries equation
The n -fold Darboux transformation T n of the focusing real modified Korteweg–de Vries (mKdV) equation is expressed in terms of the determinant representation. Using this representation, the n -soliton solutions of the mKdV equation are also expressed by determinants whose elements consist of the ei...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2017-09, Vol.89 (4), p.2299-2310 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The
n
-fold Darboux transformation
T
n
of the focusing real modified Korteweg–de Vries (mKdV) equation is expressed in terms of the determinant representation. Using this representation, the
n
-soliton solutions of the mKdV equation are also expressed by determinants whose elements consist of the eigenvalues
λ
j
and the corresponding eigenfunctions of the associated Lax equation. The nonsingular
n
-positon solutions of the focusing mKdV equation are obtained in the special limit
λ
j
→
λ
1
, from the corresponding
n
-soliton solutions and by using the associated higher-order Taylor expansion. Furthermore, the decomposition method of the
n
-positon solution into
n
single-soliton solutions, the trajectories, and the corresponding “phase shifts” of the multi-positons are also investigated. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-017-3579-x |