Smooth positon solutions of the focusing modified Korteweg–de Vries equation

The n -fold Darboux transformation T n of the focusing real modified Korteweg–de Vries (mKdV) equation is expressed in terms of the determinant representation. Using this representation, the n -soliton solutions of the mKdV equation are also expressed by determinants whose elements consist of the ei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2017-09, Vol.89 (4), p.2299-2310
Hauptverfasser: Xing, Qiuxia, Wu, Zhiwei, Mihalache, Dumitru, He, Jingsong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The n -fold Darboux transformation T n of the focusing real modified Korteweg–de Vries (mKdV) equation is expressed in terms of the determinant representation. Using this representation, the n -soliton solutions of the mKdV equation are also expressed by determinants whose elements consist of the eigenvalues λ j and the corresponding eigenfunctions of the associated Lax equation. The nonsingular n -positon solutions of the focusing mKdV equation are obtained in the special limit λ j → λ 1 , from the corresponding n -soliton solutions and by using the associated higher-order Taylor expansion. Furthermore, the decomposition method of the n -positon solution into n single-soliton solutions, the trajectories, and the corresponding “phase shifts” of the multi-positons are also investigated.
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-017-3579-x