Phytochemical diversity and synergistic effects on herbivores

Synergistic effects of multiple plant secondary metabolites on upper trophic levels constitute an underexplored but potentially widespread component of coevolution and ecological interactions. Examples of plant secondary metabolites acting synergistically as insect deterrents are not common, and man...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phytochemistry reviews 2016-12, Vol.15 (6), p.1153-1166
Hauptverfasser: Richards, Lora A., Glassmire, Andrea E., Ochsenrider, Kaitlin M., Smilanich, Angela M., Dodson, Craig D., Jeffrey, Christopher S., Dyer, Lee A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synergistic effects of multiple plant secondary metabolites on upper trophic levels constitute an underexplored but potentially widespread component of coevolution and ecological interactions. Examples of plant secondary metabolites acting synergistically as insect deterrents are not common, and many studies focus on the pharmaceutical applications of natural products, where activity is serendipitous and not an evolved response. This review summarizes some systems that are ideal for testing synergistic plant defenses and utilizes a focused meta-analysis to examine studies that have tested effects of multiple compounds on insects. Due to a dearth of ecological synergy studies, one of the few patterns for synergy that we are able to report from the meta-analysis is that phytochemical mixtures have a larger overall effect on generalist herbivores than specialist herbivores. We recommend a focus on synergy in chemical ecology programs and suggest future hypothesis tests and methods. These approaches are not focused on techniques in molecular biology to examine mechanisms at the cellular level, rather we recommend uncovering the existence of synergy first, by combining the best methods in organic synthesis, isolation, chemical ecology, bioassays, and quantitative analyses. Data generated by our recommended methods should provide rigorous tests of important hypotheses on how intraclass and interclass compounds act synergistically to deter insects, disrupt the immune response, and ultimately contribute to diversification. Further synergy research should also contribute to determining if antiherbivore synergy is widespread among plant secondary metabolites, which would be consistent with the hypothesis that synergistic defenses are a key attribute of the evolved diverse chemical mixtures found in plants.
ISSN:1568-7767
1572-980X
DOI:10.1007/s11101-016-9479-8