Multistability in a three-dimensional oscillator: tori, resonant cycles and chaos
The emergence of multistability in a simple three-dimensional autonomous oscillator is investigated using numerical simulations, calculations of Lyapunov exponents and bifurcation analysis over a broad area of two-dimensional plane of control parameters. Using Neimark–Sacker bifurcation of 1:1 limit...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2018-12, Vol.94 (4), p.2455-2467 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The emergence of multistability in a simple three-dimensional autonomous oscillator is investigated using numerical simulations, calculations of Lyapunov exponents and bifurcation analysis over a broad area of two-dimensional plane of control parameters. Using Neimark–Sacker bifurcation of 1:1 limit cycle as the starting regime, many parameter islands with the coexisting attractors were detected in the phase diagram, including the coexistence of torus, resonant limit cycles and chaos; and transitions between the regimes were considered in detail. The overlapping between resonant limit cycles of different winding numbers, torus and chaos forms the multistability. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-018-4502-9 |