Relationships of anatomical characteristics versus shrinkage and collapse properties in plantation-grown eucalypt wood from China

To explore the influence of the basic density on collapse-type shrinkage properties and to quantify the relationships of the main anatomical features with shrinkage and collapse properties, all above-mentioned parameters were determined and analyzed for three species of collapse-susceptible eucalypt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of wood science 2006-06, Vol.52 (3), p.187-194
Hauptverfasser: Wu, Y.Q.(Ehime Univ., Matsuyama (Japan)), Hayashi, K, Liu, Y, Cai, Y, Sugimori, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To explore the influence of the basic density on collapse-type shrinkage properties and to quantify the relationships of the main anatomical features with shrinkage and collapse properties, all above-mentioned parameters were determined and analyzed for three species of collapse-susceptible eucalypts, Eucalyptus urophylla, Eucalyptus grandis, and E. urophylla × E. grandis, planted in South China. The correlation coefficients were also determined and the corresponding regression equations were established with the anatomical parameters measured by using multiple linear regression. The results indicated that: (1) basic density was strongly positively linearly related to both unit tangential shrinkage (r = 0.970) and unit radial shrinkage (r = 0.959), weakly positively related to total shrinkage (r = 0.656 and 0.640 for tangential and radial, respectively), and weakly negatively related to residual collapse (r = 0.632 and 0.616 for tangential and radial, respectively). (2) The main factors affecting unit shrinkage were cell wall proportion (WP), microfibril angle (MFA), and double fiber cell wall thickness (DWT); factors playing an important role in total shrinkage were WP, ray parenchyma proportion (RP), and MFA, while RP had the highest effect on residual collapse (r = 0.949 and 0.860 for tangential and radial, respectively). (3) All corresponding regression models obtained were very suitable for the evaluation of relationships between the anatomical parameters and unit shrinkage, total shrinkage, and residual collapse, as measured using a moisture content of 28% as the fiber saturation point for all specimens.
ISSN:1435-0211
1611-4663
DOI:10.1007/s10086-005-0751-6