Phase Space Analysis of the Two-mode Binomial State Produced by Quantum Entanglement in a Beamsplitter

Phase space analysis of quantum states is a newly developed topic in quantum optics. In this work we present Wigner phase space distributions for the two-mode binomial state produced by quantum entanglement between a vacuum state and a number state in a beamsplitter. By using two new binomial formul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of theoretical physics 2019-08, Vol.58 (8), p.2521-2530
Hauptverfasser: Li, Kai-Cai, Meng, Xiang-Guo, Wang, Ji-Suo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phase space analysis of quantum states is a newly developed topic in quantum optics. In this work we present Wigner phase space distributions for the two-mode binomial state produced by quantum entanglement between a vacuum state and a number state in a beamsplitter. By using two new binomial formulas involving two-variable Hermite polynomials and the so-called entangled Wigner operator, we find that the analytical Wigner function for the binomial state | ξ 〉 q ≡ D ( ξ ) | q , 0〉 is related to a Laguerre polynomial, i.e., W σ , γ = ( − 1 ) q e − γ 2 − σ 2 π 2 L q − ς ( σ − γ ) + σ ∗ + γ ∗ 1 + | ς | 2 2 and its marginal distributions are proportional to the module-square of a single-variable Hermite polynomial. Also, the numerical results show that the larger number sum q of two modes lead to the stronger interference effect and the nonclassicality of the states | ξ 〉 q is stronger for odd q than for even q .
ISSN:0020-7748
1572-9575
DOI:10.1007/s10773-019-04142-3