Phase Space Analysis of the Two-mode Binomial State Produced by Quantum Entanglement in a Beamsplitter
Phase space analysis of quantum states is a newly developed topic in quantum optics. In this work we present Wigner phase space distributions for the two-mode binomial state produced by quantum entanglement between a vacuum state and a number state in a beamsplitter. By using two new binomial formul...
Gespeichert in:
Veröffentlicht in: | International journal of theoretical physics 2019-08, Vol.58 (8), p.2521-2530 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phase space analysis of quantum states is a newly developed topic in quantum optics. In this work we present Wigner phase space distributions for the two-mode binomial state produced by quantum entanglement between a vacuum state and a number state in a beamsplitter. By using two new binomial formulas involving two-variable Hermite polynomials and the so-called entangled Wigner operator, we find that the analytical Wigner function for the binomial state |
ξ
〉
q
≡
D
(
ξ
) |
q
, 0〉 is related to a Laguerre polynomial, i.e.,
W
σ
,
γ
=
(
−
1
)
q
e
−
γ
2
−
σ
2
π
2
L
q
−
ς
(
σ
−
γ
)
+
σ
∗
+
γ
∗
1
+
|
ς
|
2
2
and its marginal distributions are proportional to the module-square of a single-variable Hermite polynomial. Also, the numerical results show that the larger number sum
q
of two modes lead to the stronger interference effect and the nonclassicality of the states |
ξ
〉
q
is stronger for odd
q
than for even
q
. |
---|---|
ISSN: | 0020-7748 1572-9575 |
DOI: | 10.1007/s10773-019-04142-3 |