Telomere length in Agave tequilana Weber plants during the in vitro to ex vitro transition
Acclimatization ex vitro is a key stage of the micropropagation process, in which the vitro plants leave the sterile, high humidity environment in which they originated and form new leaves and roots, during which they suffer different types of stress. Changes in the telomere length (shortening and l...
Gespeichert in:
Veröffentlicht in: | Plant cell, tissue and organ culture tissue and organ culture, 2019-01, Vol.136 (1), p.133-140 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Acclimatization ex vitro is a key stage of the micropropagation process, in which the vitro plants leave the sterile, high humidity environment in which they originated and form new leaves and roots, during which they suffer different types of stress. Changes in the telomere length (shortening and lengthening) have been associated with age, the development of tissue, loss of cell replication and the ability of regeneration in different plant species. However, the genetic and biological factors that are involved in the process of shortening of telomeres across the ageing of plant species are still unknown. In this study, we used terminal restriction fragments (TRF) to examine the changes of telomere length during the in vitro to ex vitro transition in vitro plants of
Agave tequilana
, and their relationships with age in plants grown in commercial plantations. The results showed that in vitro grown plants present the longest telomeres and that a shortening occurs during the first 6 months of ex vitro acclimatization, (compared to the plantlets that were kept in vitro). A lengthening of the telomeres was observed in the acclimatized 1-year-old plants and that this was maintained in 2 and 3-year-old plants. We also observed TRF variations in the different tissues (leaves, stems and roots) of acclimatized plants. In field plants, we did not observe any important changes in the length of the telomeres. We suggest that agaves have a mechanism that maintains telomere length at the non-critical stages during development. |
---|---|
ISSN: | 0167-6857 1573-5044 |
DOI: | 10.1007/s11240-018-1499-1 |