Influence of triacontanol and jasmonic acid on metabolomics during early stages of root induction in cultured tissue of tomato (Lycopersicon esculentum)

Influence of n -triacontanol (TRIA) and jasmonic acid (JA) on metabolic profiling during root morphogenesis was studied in Lycopersicon esculentum (cv. PKM-1). Proton nuclear magnetic resonance ( 1 H NMR) based metabolomics was employed to investigate the variations in metabolic profile. Chenomx NMR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant cell, tissue and organ culture tissue and organ culture, 2018-04, Vol.133 (1), p.147-157
Hauptverfasser: Soundararajan, Malini, Swamy, G. Sivakumar, Gaonkar, Sumana Krishna, Deshmukh, Sudha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Influence of n -triacontanol (TRIA) and jasmonic acid (JA) on metabolic profiling during root morphogenesis was studied in Lycopersicon esculentum (cv. PKM-1). Proton nuclear magnetic resonance ( 1 H NMR) based metabolomics was employed to investigate the variations in metabolic profile. Chenomx NMR suite v.8.1 was used to identify and quantify metabolites based on their respective signature spectra. The levels of 47 metabolites were monitored for 72 h at specific time intervals (0, 3, 6, 9, 12, 24, 36, 48 and 72 h). Principal component analysis was performed to determine the variations in the metabolic profile between control and treatments during in vitro rhizogenesis. TRIA was observed to promote early root emergence (24 h) and also influence the metabolic variation during rhizogenesis between 9 and 24 h post exposure. Compounds such as IAA, ATP, NADPH, UDP- N -acetylglucosamine and gallate predominated at 9 h. Unlike TRIA, JA was unable to promote an early root induction. However, it influenced the synthesis of a relatively higher concentration of IAA at 6 h when compared to ATP, NADPH and trigonelline at 9 h. In the presence of both TRIA and JA (TRIA + JA), significant changes in the metabolic profiles were observed 24 h post exposure and the rooting was observed only after 72 h. The study suggests that TRIA may accelerate in vitro rhizogenesis of cultured tomato tissues by mainly increasing the synthesis of other growth promoting metabolites. But in the presence of JA, TRIA’s effect appears to be reduced.
ISSN:0167-6857
1573-5044
DOI:10.1007/s11240-017-1369-2