Ionosphere tomography using wavelet neural network and particle swarm optimization training algorithm in Iranian case study

Computerized tomography provides valuable information for imaging the ionospheric electron density distribution. We use a wavelet neural network with a particle swarm optimization training algorithm to solve pixel-based ionospheric tomography. This new method is called ionospheric tomography based o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:GPS solutions 2017-07, Vol.21 (3), p.1301-1314
Hauptverfasser: Ghaffari Razin, Mir-Reza, Voosoghi, Behzad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1314
container_issue 3
container_start_page 1301
container_title GPS solutions
container_volume 21
creator Ghaffari Razin, Mir-Reza
Voosoghi, Behzad
description Computerized tomography provides valuable information for imaging the ionospheric electron density distribution. We use a wavelet neural network with a particle swarm optimization training algorithm to solve pixel-based ionospheric tomography. This new method is called ionospheric tomography based on the neural network (ITNN). In this method, vertical and horizontal objective functions are minimized. Due to a poor vertical resolution of ionospheric tomography, empirical orthogonal functions are used as vertical objective function. For numerical experimentation, observations collected at 38 GPS stations on 2 days in 2007 (April 3 and July 13) from the Iranian permanent GPS network (IPGN) are used. Ionosonde observations (φ = 35.7382°, λ = 51.3851°) are used for validating the reliability of the proposed method. The modeling region is between 24°E to 40°E and 44°N to 64°N. The results of the ITNN method have been compared to those of the international reference ionosphere model 2012 (IRI-2012) and the spherical cap harmonics (SCHs) method as a local model. The minimum relative error for ITNN is 1.41% and the maximum relative error is 24.03%. Also, the root-mean-square error of 0.1932 × 10 11 (el/m 3 ) has been computed for ITNN, which is less than the RMSE of the IRI-2012 and SCHs method. The comparison of ITNN results with IRI-2012 and SCHs method shows that the proposed approach is superior to those of the traditional methods.
doi_str_mv 10.1007/s10291-017-0614-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259286965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259286965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e6e49f047ec30b39999d1bbdda455a2b4f03d3374fd9cc4852969e46522ed43f3</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOI4-gLuA62huvWQpg5eBATe6DmmbdjK2SU1Sh9GXN0MFV57Nfxb_dw58AFwTfEswLu4CwVQQhEmBcE44EidgQTJKECnL_DTtuMQoYwU-Bxch7DCmWAi-AN9rZ10Yt9prGN3gOq_G7QFOwdgO7tWn7nWEVk9e9Sni3vl3qGwDR-WjqXsNw175AboxmsF8qWichdErY4-86jvnTdwO0Fi49soaZWGtQqLi1BwuwVmr-qCvfnMJ3h4fXlfPaPPytF7db1DNSB6RzjUXLeaFrhmumEjTkKpqGsWzTNGKt5g1jBW8bURd8zKjIhea5xmluuGsZUtwM98dvfuYdIhy5yZv00tJaSZomYs8Sy0yt2rvQvC6laM3g_IHSbA8OpazY5kcy6NjKRJDZyakru20_7v8P_QD1PWB9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259286965</pqid></control><display><type>article</type><title>Ionosphere tomography using wavelet neural network and particle swarm optimization training algorithm in Iranian case study</title><source>SpringerLink Journals</source><creator>Ghaffari Razin, Mir-Reza ; Voosoghi, Behzad</creator><creatorcontrib>Ghaffari Razin, Mir-Reza ; Voosoghi, Behzad</creatorcontrib><description>Computerized tomography provides valuable information for imaging the ionospheric electron density distribution. We use a wavelet neural network with a particle swarm optimization training algorithm to solve pixel-based ionospheric tomography. This new method is called ionospheric tomography based on the neural network (ITNN). In this method, vertical and horizontal objective functions are minimized. Due to a poor vertical resolution of ionospheric tomography, empirical orthogonal functions are used as vertical objective function. For numerical experimentation, observations collected at 38 GPS stations on 2 days in 2007 (April 3 and July 13) from the Iranian permanent GPS network (IPGN) are used. Ionosonde observations (φ = 35.7382°, λ = 51.3851°) are used for validating the reliability of the proposed method. The modeling region is between 24°E to 40°E and 44°N to 64°N. The results of the ITNN method have been compared to those of the international reference ionosphere model 2012 (IRI-2012) and the spherical cap harmonics (SCHs) method as a local model. The minimum relative error for ITNN is 1.41% and the maximum relative error is 24.03%. Also, the root-mean-square error of 0.1932 × 10 11 (el/m 3 ) has been computed for ITNN, which is less than the RMSE of the IRI-2012 and SCHs method. The comparison of ITNN results with IRI-2012 and SCHs method shows that the proposed approach is superior to those of the traditional methods.</description><identifier>ISSN: 1080-5370</identifier><identifier>EISSN: 1521-1886</identifier><identifier>DOI: 10.1007/s10291-017-0614-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Atmospheric Sciences ; Automotive Engineering ; Computed tomography ; Density distribution ; Earth and Environmental Science ; Earth Sciences ; Electrical Engineering ; Electron density ; Errors ; Experimentation ; Geophysics/Geodesy ; Global positioning systems ; GPS ; Ionosondes ; Ionosphere ; Ionospheric electron density ; Neural networks ; Objective function ; Original Article ; Orthogonal functions ; Particle swarm optimization ; Satellite navigation systems ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Spherical caps ; Spherical harmonics</subject><ispartof>GPS solutions, 2017-07, Vol.21 (3), p.1301-1314</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>GPS Solutions is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e6e49f047ec30b39999d1bbdda455a2b4f03d3374fd9cc4852969e46522ed43f3</citedby><cites>FETCH-LOGICAL-c316t-e6e49f047ec30b39999d1bbdda455a2b4f03d3374fd9cc4852969e46522ed43f3</cites><orcidid>0000-0002-5579-5889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10291-017-0614-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10291-017-0614-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ghaffari Razin, Mir-Reza</creatorcontrib><creatorcontrib>Voosoghi, Behzad</creatorcontrib><title>Ionosphere tomography using wavelet neural network and particle swarm optimization training algorithm in Iranian case study</title><title>GPS solutions</title><addtitle>GPS Solut</addtitle><description>Computerized tomography provides valuable information for imaging the ionospheric electron density distribution. We use a wavelet neural network with a particle swarm optimization training algorithm to solve pixel-based ionospheric tomography. This new method is called ionospheric tomography based on the neural network (ITNN). In this method, vertical and horizontal objective functions are minimized. Due to a poor vertical resolution of ionospheric tomography, empirical orthogonal functions are used as vertical objective function. For numerical experimentation, observations collected at 38 GPS stations on 2 days in 2007 (April 3 and July 13) from the Iranian permanent GPS network (IPGN) are used. Ionosonde observations (φ = 35.7382°, λ = 51.3851°) are used for validating the reliability of the proposed method. The modeling region is between 24°E to 40°E and 44°N to 64°N. The results of the ITNN method have been compared to those of the international reference ionosphere model 2012 (IRI-2012) and the spherical cap harmonics (SCHs) method as a local model. The minimum relative error for ITNN is 1.41% and the maximum relative error is 24.03%. Also, the root-mean-square error of 0.1932 × 10 11 (el/m 3 ) has been computed for ITNN, which is less than the RMSE of the IRI-2012 and SCHs method. The comparison of ITNN results with IRI-2012 and SCHs method shows that the proposed approach is superior to those of the traditional methods.</description><subject>Algorithms</subject><subject>Atmospheric Sciences</subject><subject>Automotive Engineering</subject><subject>Computed tomography</subject><subject>Density distribution</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electrical Engineering</subject><subject>Electron density</subject><subject>Errors</subject><subject>Experimentation</subject><subject>Geophysics/Geodesy</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Ionosondes</subject><subject>Ionosphere</subject><subject>Ionospheric electron density</subject><subject>Neural networks</subject><subject>Objective function</subject><subject>Original Article</subject><subject>Orthogonal functions</subject><subject>Particle swarm optimization</subject><subject>Satellite navigation systems</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Spherical caps</subject><subject>Spherical harmonics</subject><issn>1080-5370</issn><issn>1521-1886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kMtKxDAUhoMoOI4-gLuA62huvWQpg5eBATe6DmmbdjK2SU1Sh9GXN0MFV57Nfxb_dw58AFwTfEswLu4CwVQQhEmBcE44EidgQTJKECnL_DTtuMQoYwU-Bxch7DCmWAi-AN9rZ10Yt9prGN3gOq_G7QFOwdgO7tWn7nWEVk9e9Sni3vl3qGwDR-WjqXsNw175AboxmsF8qWichdErY4-86jvnTdwO0Fi49soaZWGtQqLi1BwuwVmr-qCvfnMJ3h4fXlfPaPPytF7db1DNSB6RzjUXLeaFrhmumEjTkKpqGsWzTNGKt5g1jBW8bURd8zKjIhea5xmluuGsZUtwM98dvfuYdIhy5yZv00tJaSZomYs8Sy0yt2rvQvC6laM3g_IHSbA8OpazY5kcy6NjKRJDZyakru20_7v8P_QD1PWB9g</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Ghaffari Razin, Mir-Reza</creator><creator>Voosoghi, Behzad</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-5579-5889</orcidid></search><sort><creationdate>20170701</creationdate><title>Ionosphere tomography using wavelet neural network and particle swarm optimization training algorithm in Iranian case study</title><author>Ghaffari Razin, Mir-Reza ; Voosoghi, Behzad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e6e49f047ec30b39999d1bbdda455a2b4f03d3374fd9cc4852969e46522ed43f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Atmospheric Sciences</topic><topic>Automotive Engineering</topic><topic>Computed tomography</topic><topic>Density distribution</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electrical Engineering</topic><topic>Electron density</topic><topic>Errors</topic><topic>Experimentation</topic><topic>Geophysics/Geodesy</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Ionosondes</topic><topic>Ionosphere</topic><topic>Ionospheric electron density</topic><topic>Neural networks</topic><topic>Objective function</topic><topic>Original Article</topic><topic>Orthogonal functions</topic><topic>Particle swarm optimization</topic><topic>Satellite navigation systems</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Spherical caps</topic><topic>Spherical harmonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghaffari Razin, Mir-Reza</creatorcontrib><creatorcontrib>Voosoghi, Behzad</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>GPS solutions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghaffari Razin, Mir-Reza</au><au>Voosoghi, Behzad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionosphere tomography using wavelet neural network and particle swarm optimization training algorithm in Iranian case study</atitle><jtitle>GPS solutions</jtitle><stitle>GPS Solut</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>21</volume><issue>3</issue><spage>1301</spage><epage>1314</epage><pages>1301-1314</pages><issn>1080-5370</issn><eissn>1521-1886</eissn><abstract>Computerized tomography provides valuable information for imaging the ionospheric electron density distribution. We use a wavelet neural network with a particle swarm optimization training algorithm to solve pixel-based ionospheric tomography. This new method is called ionospheric tomography based on the neural network (ITNN). In this method, vertical and horizontal objective functions are minimized. Due to a poor vertical resolution of ionospheric tomography, empirical orthogonal functions are used as vertical objective function. For numerical experimentation, observations collected at 38 GPS stations on 2 days in 2007 (April 3 and July 13) from the Iranian permanent GPS network (IPGN) are used. Ionosonde observations (φ = 35.7382°, λ = 51.3851°) are used for validating the reliability of the proposed method. The modeling region is between 24°E to 40°E and 44°N to 64°N. The results of the ITNN method have been compared to those of the international reference ionosphere model 2012 (IRI-2012) and the spherical cap harmonics (SCHs) method as a local model. The minimum relative error for ITNN is 1.41% and the maximum relative error is 24.03%. Also, the root-mean-square error of 0.1932 × 10 11 (el/m 3 ) has been computed for ITNN, which is less than the RMSE of the IRI-2012 and SCHs method. The comparison of ITNN results with IRI-2012 and SCHs method shows that the proposed approach is superior to those of the traditional methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10291-017-0614-9</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5579-5889</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1080-5370
ispartof GPS solutions, 2017-07, Vol.21 (3), p.1301-1314
issn 1080-5370
1521-1886
language eng
recordid cdi_proquest_journals_2259286965
source SpringerLink Journals
subjects Algorithms
Atmospheric Sciences
Automotive Engineering
Computed tomography
Density distribution
Earth and Environmental Science
Earth Sciences
Electrical Engineering
Electron density
Errors
Experimentation
Geophysics/Geodesy
Global positioning systems
GPS
Ionosondes
Ionosphere
Ionospheric electron density
Neural networks
Objective function
Original Article
Orthogonal functions
Particle swarm optimization
Satellite navigation systems
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Spherical caps
Spherical harmonics
title Ionosphere tomography using wavelet neural network and particle swarm optimization training algorithm in Iranian case study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A27%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionosphere%20tomography%20using%20wavelet%20neural%20network%20and%20particle%20swarm%20optimization%20training%20algorithm%20in%20Iranian%20case%20study&rft.jtitle=GPS%20solutions&rft.au=Ghaffari%20Razin,%20Mir-Reza&rft.date=2017-07-01&rft.volume=21&rft.issue=3&rft.spage=1301&rft.epage=1314&rft.pages=1301-1314&rft.issn=1080-5370&rft.eissn=1521-1886&rft_id=info:doi/10.1007/s10291-017-0614-9&rft_dat=%3Cproquest_cross%3E2259286965%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259286965&rft_id=info:pmid/&rfr_iscdi=true