Ionosphere tomography using wavelet neural network and particle swarm optimization training algorithm in Iranian case study
Computerized tomography provides valuable information for imaging the ionospheric electron density distribution. We use a wavelet neural network with a particle swarm optimization training algorithm to solve pixel-based ionospheric tomography. This new method is called ionospheric tomography based o...
Gespeichert in:
Veröffentlicht in: | GPS solutions 2017-07, Vol.21 (3), p.1301-1314 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Computerized tomography provides valuable information for imaging the ionospheric electron density distribution. We use a wavelet neural network with a particle swarm optimization training algorithm to solve pixel-based ionospheric tomography. This new method is called ionospheric tomography based on the neural network (ITNN). In this method, vertical and horizontal objective functions are minimized. Due to a poor vertical resolution of ionospheric tomography, empirical orthogonal functions are used as vertical objective function. For numerical experimentation, observations collected at 38 GPS stations on 2 days in 2007 (April 3 and July 13) from the Iranian permanent GPS network (IPGN) are used. Ionosonde observations (φ = 35.7382°, λ = 51.3851°) are used for validating the reliability of the proposed method. The modeling region is between 24°E to 40°E and 44°N to 64°N. The results of the ITNN method have been compared to those of the international reference ionosphere model 2012 (IRI-2012) and the spherical cap harmonics (SCHs) method as a local model. The minimum relative error for ITNN is 1.41% and the maximum relative error is 24.03%. Also, the root-mean-square error of 0.1932 × 10
11
(el/m
3
) has been computed for ITNN, which is less than the RMSE of the IRI-2012 and SCHs method. The comparison of ITNN results with IRI-2012 and SCHs method shows that the proposed approach is superior to those of the traditional methods. |
---|---|
ISSN: | 1080-5370 1521-1886 |
DOI: | 10.1007/s10291-017-0614-9 |